您现在的位置是: 首页 > 教育改革 教育改革
重庆数学高考题答案_重庆高考数学试卷答案
tamoadmin 2024-06-14 人已围观
简介1.2022新高考全国一卷数学试卷及答案解析2.2007重庆高考数学第13题3.数学题,06年重庆的高考题。详情在问题补充里面4.高中数学解析几何题5.2022高考数学题及答案(2020高考数学题及答案解析)6.重庆高考文科数学2013年,第19题第二问,有一处看不懂。。求指点,谢谢!可以得到0F1=0F2=3a/2到F1的距离根据这个可以得到2c=3a/2,c2=a2+b2,解得b2=(7/16
1.2022新高考全国一卷数学试卷及答案解析
2.2007重庆高考数学第13题
3.数学题,06年重庆的高考题。详情在问题补充里面
4.高中数学解析几何题
5.2022高考数学题及答案(2020高考数学题及答案解析)
6.重庆高考文科数学2013年,第19题第二问,有一处看不懂。。求指点,谢谢!
可以得到0F1=0F2=3a/2到F1的距离根据这个可以得到2c=3a/2,c2=a2+b2,解得b2=(7/16)a2,剩下的你应该会了
设直线交x轴于D,则角PF2D为60度,因为PF2=F1F2=2c,所以F2D=(1/2)PF2=c,所以3/2a=2c;
a=4/3c,b^2=(7/9)c^2,e=b/a=7^(1/2)/4
答案正确3/4
P为直线x=3a/2上的一点,三角形F2PF1是底角为30度的等腰三角形
设M为直线x=3a/2与x轴的交点
可知只有∠PF1F2=∠F1PF2=30°
所以∠PF2F1=60°
则在RT△PF2M中
F2M=1/2*PF2=1/2*2C=c
而F2M=3a/2-c
所以3a/2-c=c
因此3a=4c
e=c/a=3/4
2022新高考全国一卷数学试卷及答案解析
2008年高考(重庆卷)数学(理科)解析
满分150分。考试时间120分钟。
注意事项:
1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
参考公式:
如果事件A、B互斥,那么 P(A+B)=P(A)+P(B)
如果事件A、B相互独立,那么P(A·B)=P(A)·P(B)
如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率
Pn(K)=kmPk(1-P)n-k
以R为半径的球的体积V= πR3.
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的.
(1)复数1+ =
(A)1+2i (B)1-2i (C)-1 (D)3
标准答案A
试题解析1+ =1+
高考考点复数的概念与运算。
易错提醒计算失误。
学科网备考提示复数的概念与计算属于简单题,只要考生细心一般不会算错。
(2) 设 是整数,则“ 均为偶数” 是“ 是偶数”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D)既不充分也不必要条件
标准答案A
试题解析 均为偶数 是偶数 则充分; 是偶数则 均为偶数或者 均为奇数即 是偶数 均为偶数 则不必要,故选A
高考考点利用数论知识然后根据充要条件的概念逐一判定
易错提醒 是偶数则 均为偶数或者 均为奇数
学科网备考提示 均为偶数 是偶数,易得;否定充要时只要举例: ,即可。
(3)圆O1: 和圆O2: 的位置关系是
(A)相离 (B)相交 (C)外切 (D)内切
标准答案B
试题解析 , , 则
高考考点圆的一般方程与标准方程以及两圆位置关系
易错提醒 相交
学科网备考提示圆的一般方程与标准方程互化,此题告诉我们必须全面掌握每一个知识点。
(4)已知函数y= 的最大值为M,最小值为m,则 的值为
(A) (B) (C) (D)
标准答案C
试题解析定义域 ,当且仅当 即 上式取等号,故最大值为 最小值为
高考考点均值定理
易错提醒正确选用
学科网备考提示教学中均值定理变形应高度重视和加强训练
(5)已知随机变量 服从正态分布N(3,a2),则 =
(A) (B) (C) (D)
标准答案D
试题解析 服从正态分布N(3,a2) 则曲线关于 对称,
高考考点正态分布的意义和主要性质。
易错提醒正态分布 性质:曲线关于 对称
学科网备考提示根据正态分布 性质是个较少考查的知识点,尽管此题只考查概念,但是由于考生不注意全面掌握每一个知识点,因而错误率相当高。此题告诉我们必须全面掌握每一个知识点。
(6) 若定义在 上的函数 满足:对任意 有 则下列说法一定正确的是
(A) 为奇函数 (B) 为偶函数(C) 为奇函数(D) 为偶函数
(8)已知双曲线 (a>0,b>0)的一条渐近线为 ,离心率 ,则双曲线方程为
(A) - =1 (B)
(C) (D)
标准答案C
试题解析 , , 所以
高考考点双曲线的几何性质
易错提醒消去参数
学科网备考提示圆锥曲线的几何性质是高考必考内容
(9)如解(9)图,体积为V的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.V1为小球相交部分(图中阴影部分)的体积,V2为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是
(A)V1= (B) V2=
(C)V1> V2 (D)V1< V2
标准答案D
试题解析 设大球半径为 ,小球半径为 根据题意 所以 于是 即 所以
高考考点球的体积公式及整体思想
易错提醒 及不等式的性质
学科网备考提示数形结合方法是高考解题的锐利武器,应当很好掌物。
(10)函数f(x)= ( ) 的值域是
(A) (B) (C) (D)
标准答案B
试题解析特殊值法, 则f(x)= 淘汰A,
令 得 当时 时 所以矛盾 淘汰C, D
高考考点三角函数与函数值域
易错提醒不易利用函数值为 进行解题
学科网备考提示加强特殊法---淘汰法解选择题的训练,节省宝贵的时间,提高准确率
二、填空题:本大题共6小题,每小题4分,共24分,把答案填写在答题卡相应位置上
(11)设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},
则
标准答案{2,5}
试题解析 ,
高考考点集合运算
易错提醒补集的概念
学科网备考提示应当把集合表示出来,一般就不会算错。
(12)已知函数f(x)= (当x 0时) ,点在x=0处连续,则 .
标准答案
试题解析 又 点在x=0处连续,
所以 即 故
高考考点连续的概念与极限的运算
易错提醒
学科网备考提示函数连续解题较少考查的知识点,尽管此题只考查概念,但是由于考生不注意全面掌握每一个知识点,因而错误率相当高。此题告诉我们必须全面掌握每一个知识点。
(13)已知 (a>0) ,则 .
标准答案3
试题解析
高考考点指数与对数的运算
易错提醒
学科网备考提示加强计算能力的训练,训练准确性和速度
(14)设 是等差数列{ }的前n项和, , ,则 .
标准答案-72
试题解析 ,
高考考点等差数列求和公式以及等差数列的性质的应用。
易错提醒等差数列的性质
学科网备考提示此题不难,但是应当注意不要因为计算失误而丢分
(15)直线 与圆 相交于两点A,B,弦AB的中点为(0,1),则直线 的方程为 。
标准答案
试题解析设圆心 ,直线 的斜率为 , 弦AB的中点为 , 的斜率为 , 则 ,所以 由点斜式得
高考考点直线与圆的位置关系
易错提醒
学科网备考提示重视圆的几何性质
(16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).
标准答案216
试题解析 则底面共 , ,
,由分类计数原理得上底面共 ,由分步类计数原理得共有
高考考点排列与组合的概念,并能用它解决一些实际问题。
易错提醒掌握排列组合的一些基本方法,做题时从特殊情况分析,可以避免错误。
学科网备考提示排列组合的基本解题方法
三、解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤.
(17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)
设 的内角A,B,C的对边分别为a,b,c,且A= ,c=3b.求:
(Ⅰ) 的值;(Ⅱ)cotB+cot C的值.
标准答案 解:(Ⅰ)由余弦定理得
= 故
(Ⅱ)解法一: = =
由正弦定理和(Ⅰ)的结论得
故
解法二:由余弦定理及(Ⅰ)的结论有
=
故
同理可得
从而
高考考点本小题主要考查余弦定理、三角函数的基本公式、三角恒等变换等基本知识,以及推理和运算能力。 三角函数的化简通常用到降幂、切化弦、和角差角公式的逆运算。
易错提醒正余切转化为正余
学科网备考提示三角函数在高考题中属于容易题,是我们拿分的基础。。
(18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为 ,且各局胜负相互独立.求:(Ⅰ) 打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数 的分别列与期望E .
标准答案 解:令 分别表示甲、乙、丙在第k局中获胜.
(Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比赛还未停止的概率为
(Ⅱ) 的所有可能值为2,3,4,5,6,且
故有分布列
2
3
4
5
6
P
从而 (局).
高考考点本题主要考查独立事件同时发生、互斥事件、分布列、数学期望的概念和计算,考查分析问题及解决实际问题的能力。
易错提醒连胜两局或打满6局时停止
学科网备考提示重视概率应用题,近几年的试题必有概率应用题。
(19)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)
如题(19)图,在 中,B= ,AC= ,D、E两点分别在AB、AC上.使
,DE=3.现将 沿DE折成直二角角,求:
(Ⅰ)异面直线AD与BC的距离;
(Ⅱ)二面角A-EC-B的大小(用反三角函数表示).
标准答案 解法一:
(Ⅰ)在答(19)图1中,因 ,故BE∥BC.又因B=90°,从而AD⊥DE.
在第(19)图2中,因A-DE-B是直二面角,AD⊥DE,故AD⊥底面DBCE,从
而AD⊥DB.而DB⊥BC,故DB为异面直线AD与BC的公垂线.
下求DB之长.在答(19)图1中,由 ,得
又已知DE=3,从而
因
y、z轴的正方向建立空间直角坐标系,则D(0,0,0),A(0,0,4), ,E(0,3,0). 过D作DF⊥CE,交CE的延长线
于F,连接AF.
设 从而
,有 ①
又由 ②
联立①、②,解得
因为 ,故 ,又因 ,所以 为所求的二面角A-EC-B的平面角.因 有 所以
因此所求二面角A-EC-B的大小为
高考考点本题主要考查直线、直线与平面、平面与平面的位置关系、异面直线间的距离等知识,考查空间想象能力和思维能力,利用综合法或向量法解决立体几何问题的能力。
易错提醒
学科网备考提示立体几何中的平行、垂直、二面角是考试的重点。
(20)(本小题满分13分.(Ⅰ)小问5分.(Ⅱ)小问8分.)
设函
(Ⅰ)用 分别表示 和 ;
(Ⅱ)当bc取得最小值时,求函数g(x)= 的单调区间。
标准答案解:(Ⅰ)因为
又因为曲线 通过点(0, ),故
又曲线 在 处的切线垂直于 轴,故 即 ,因此
(Ⅱ)由(Ⅰ)得
故当 时, 取得最小值- .此时有
从而
所以 令 ,解得
当
当
当
由此可见,函数 的单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2).
高考考点本题主要考查导数的概念和计算、利用导数研究函数的单调性、利用单调性求最值以及不等式的性质。
易错提醒不能求 的最小值
学科网备考提示应用导数研究函数的性质,自2003年新教材使用以来,是常考不衰的考点。
(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)
如题(21)图, 和 的平面上的两点,动点 满足:
(Ⅰ)求点 的轨迹方程:
(Ⅱ)若
由方程组 解得 即P点坐标为
高考考点本题主要考查椭圆的方程及几何性质、 等基础知识、基本方法和分析问题、解决问题的能力。
易错提醒不能将条件 与 联系起来
学科网备考提示重视解析几何条件几何意义教学与训练。
(22)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)
设各项均为正数的数列{an}满足 .
(Ⅰ)若 ,求a3,a4,并猜想a2cos的值(不需证明);
(Ⅱ)记 对n≥2恒成立,求a2的值及数列{bn}的通项公式.
标准答案 解:(Ⅰ)因
由此有 ,故猜想 的通项为
对 求和得 ⑦
由题设知
即不等式22k+1< 对k N*恒成立.但这是不可能的,矛盾.
因此 ,结合③式知, 因此a2=2*2= 将 代入⑦式得 =2- (n N*),
所以 = =22- (n N*)
高考考点本题主要考查等比数列的求和、数学归纳法、不等式的性质,综合运用知识分析问题和解决问题的能力。
易错提醒如何证明,选择方法很重要。本题(Ⅱ)证明要会熟练的使用不等式放宿技巧。
学科网备考提示这种题不仅要求考生有很好的思维、推理能力;而且平时做题要善于总结,对数列与不等式的放宿技巧要非常熟练。
2007重庆高考数学第13题
为了帮助大家全面了解2022年新高考全国一卷数学卷,以下是我整理的2022新高考全国一卷数学试卷及答案解析参考,欢迎大家借鉴与参考!
2022新高考全国一卷数学试卷
2022新高考全国一卷数学试卷答案解析参考
高考怎样填志愿
1、选择哪个学校
填报的几个志愿中要注意梯度,尤其是分数正好卡线的同学。不要一味追求名校,将所有志愿都选择同一层次的学校,更忌全部志愿扎堆名校。
2、选择什么专业
选择专业最主要的是结合自己的兴趣和基础,或者 毕业 后想从事的工作有特殊要求的专业,比如想当医生,就要选择相对应的专业。
3、提前了解各个学校的情况
在填报志愿之前,提前将各个学校的简章和招生计划等一系列的情况了解清楚,看自己的情况是否与该校复合,这样才能更好的去填写志愿。
服从调剂意味着什么
1、增加了一次录取机会
在平行志愿投档录取模式下,实行“排位优先,一轮投档”,每个考生只有一次被投档的机会。
如果考生所填报的专业志愿都未能被录取,选择服从专业调剂则可能被调至院校专业组内还没有录取满额的专业。而如果考生不服从专业调剂,那么一旦被退档,只能等待补录,或参加高职自招。
2、服从调剂,不一定会被调剂到其他专业
从录取的稳妥性上来说,服从专业调剂对于考生是利大于弊的。并不是说选择了专业调剂,就不会被所填报的专业录取,直接被调剂到其他专业。
如果考生的分数足够进入所填报专业时,就会被录取到所填报专业,服从专业调剂就没有派上用场。只有当考生所报专业全都录取额满,才会进入调剂程序。
3、专业调剂会调到哪里去?
专业服从调剂,是指在所填报的院校专业组内进行调剂。一般情况下,专业服从的范围是,考生当年填报的招生院校专业组,在本次招生计划录取中未满额的专业。
高考之后可以去哪玩
1、云南
云南是一个温和的城市,也是许多人向往的地方。可以在丽江感受古城魅力、在大理感受风花雪月、在香格里拉体验 传说 中的女儿国,一个四季如春的地方很适合放松心情。
云南香格里拉,感受真正的大自然。香格里拉的自然景色是雪山、冰川、峡谷、森林、草甸、湖泊、美丽、明朗、安然、闲逸、悠远、知足、宁静、和谐,是人们美好理想的归宿。在7月到8月间,避开如涌的人群,把自己放逐在自然,听风的呼唤,听鸟的鸣叫,听流水的声音,聆听自己的心声,这是真正的香格里拉。
2、杭州
“上有天堂,下有苏杭”,杭州是我国宜居城市之一,到西湖边上走一走,品尝东坡肉、干炸响铃、西湖醋鱼……
3、重庆
说到重庆就会想到“山城”,说起来重庆也是一个神奇的城市,你以为你在以为你在地面,其实你在地下。到重庆看穿越房屋的轻轨、看斑斓的城市,还能吃上麻辣辣的火锅。
4、厦门
厦门是一个小资城市,尤其是鼓浪屿,充满文艺气息,也适合情侣度假。而且因为靠海,厦门还有非常多便宜又好吃的海鲜
5、西藏
西藏是一个神圣又神秘的地方,如果有机会,人生中一定要去一次。到布达拉宫、纳木错体验纯净的心灵,到珠穆朗玛峰挑战高峰,即使是高原反应也是值得留念的体验。
6、九寨沟
九寨沟以绝天下的原始、神秘而闻名。自然景色兼有湖泊、瀑布、雪山、森林之美,有“童话世界”的美誉。这时雪峰玉立,青山流水,交相辉映。这时的瀑布、溪流更是迷人,如飞珠撒玉,异常雄伟秀丽。其中有千年古木,奇花异草,四时变化,色彩纷呈,倒影斑斓,气象万千,是夏季消暑的理想之地。
7、桂林
“桂林山水甲天下”夸的就是桂林的漓江山水。漓江两岸风景如画,当你泛着竹排漫游漓江时,肯定会感觉自己置身于360的泼墨山水中,好山好水目不暇接。另外,桂林的阳朔可是一个魅力十足的旅游 热点 。在阳朔上至七八十的老人,下至七八岁的小孩都或多或少能说上几句流利的英语,要不是周围的建筑风格提醒你这是中国境内,没准你还以为自己魂游到哪个“鬼”地方了呢。西街的氛围有点像北京的三里屯,那里的酒吧融合了中西两种 文化 的精华,在西街呆着就算不喝酒只喝茶,也能体会什么叫享受。
2022新高考全国一卷数学试卷及答案解析相关 文章 :
★ 2022高考北京卷数学真题及答案解析
★ 2022高考全国乙卷试题及答案(理科)
★ 2022全国甲卷高考数学文科试卷及答案解析
★ 2022高考甲卷数学真题试卷及答案
★ 2022年北京高考数学试卷
★ 2022高考全国甲卷数学试题及答案
★ 2022全国新高考I卷语文试题及答案
★ 2022全国新高考Ⅰ卷英语试题及答案解析
★ 2022年全国新高考II卷数学真题及答案
★ 2022北京卷高考文科数学试题及答案解析
数学题,06年重庆的高考题。详情在问题补充里面
解:
要使根号里面的有意义,必须满足根号里面的恒大于等于0,
所以:(2^(x^2)+2a*x-a)-1>=0;
即:2^(x^2)+2a*x-a>=1;
所以:指数x^2+2a*x-a>=0恒成立;
而且x^2系数为整数,所以这个方程最多只有一个解
即根的判别式(2a)^2-4*(-a)<=0,
最后解出关于a的方程式的解:-1<=a<=0;
即 a∈[-1,0] 。
高中数学解析几何题
答案相信你已经看过了,我只是从我的理解出发做一下这个题:
第1小题过于简单,就不再做了;
第2小题:
设y=f(x)-x2+x,就有f(y)=y
又因为仅有一个实数使得f(x)=x,所以y是一个唯一的常数,设为n[如果y=f(x)-x2+x的值域范围不唯一,也就是y可以有多个取值,岂不违反题意中“仅有一个实数使得f(x)=x”的条件?注意,这里n是一个固定数值,且f(n)=n]
这就是说,对于任意实数x,都有f(x)-x2+x=n。当然,x等于实数n时这个等式也成立,所以把x=n代入该式,得:
f(n)-n2+n=n
又因为f(n)=n,所以:
n-n2+n=n
-n2+n=0
得出n的2个候选值:0和1,然后检验哪个候选值符合题中所列条件
n=0时,f(x)-x2+x=n=0
f(x)=x2-x
有两个实数(实数0和实数2)满足f(x)=x,不符合题意,予以排除
n=1时,f(x)-x2+x=n=1
f(x)=x2-x+1
只有一个实数(实数1)满足f(x)=x,符合题意
因此,原函数方程的解就是
f(x)=x2-x+1 (和你的表示法一样,本题中x2表示x的平方)
你提出你认为f(x)=x。我想是你习惯性地把这一块f(x)-x2+x看着一个变量y,从而有f(y)=y,也即f(x)=x。如果f(x)-x2+x的值域是全体实数的话,肯定就会导致f(x)=x。你把f(x)-x2+x看着一个变量说明你的数学功底不错,然而当发现这很荒谬的时候,就应该下意识地认识到这不可能是一个复合变量而是一个常数。
另外,针对“菜鸟_学艺”朋友的回答,我认为,本题中题1和题2是针对同一个函数方程的不同的两个题,条件不可混用。国家高考题,多么严肃的事,岂容出错。
2022高考数学题及答案(2020高考数学题及答案解析)
1.设B(x1,y1)C(x2,y2)
过定点(-2,-4)作倾斜角为45°的直线l
则直线方程为 y=x-2 代入y2=2px
x^2-(2p+4)x+4=0
x1+x2=2p+4
x1*x2=4
AB BC AC成等比数列
则AB/BC=BC/AC
(x1+2)/(x2-x1)=(x2-x1)/(x2+2)
整理得
x1x2+2(x1+x2)+4=(x1+x2)^2-4x1x2
4+2(2p+4)+4=(2p+4)^2-16
解得p=1
所以抛物线的方程为
y^2=2x
2.设AB所在直线的斜率为K,A(XA,YA),B(XB,YB),P(XP,YP)
①XP=(XA+XB)/2
②YP=(YA+YB)/2
③XA^2+YA^2/4=1
④XB^2+YB^2/4=1
③-④化简,并有①,②代入可得XP/YP=-K/4(过程略)
⑤YP=-4*XP/K
又⑥YP=K*XP+1(P是AB中点,一定落在直线上)
⑤*(⑥-1)=-4*XP^2,化简得;
X^2/(1/16)+(Y-1/2)^2/(1/4)=1
当K=0时,P(0,1),等式成立
当K不存在时,P(0,0),等式成立
.........
N为P所在椭圆的中心,NP向量的模的最小值与最大值分别是该椭圆的半短轴与半长轴。
4.解:(1):由F(1,0)可知,所求椭圆的焦点在y轴上.
∴可设所求椭圆的方程为 y?/a?+x?/b?=1(a>b>0).
由题可知,c=1.
又∵e=1/2
∴有e?=c?/a?=1/a?=1/4
则,a?=4
∴b?=a?-c?=3.
即:所求椭圆方程为 y?/4+x?/3=1.
(2):如图(我发了一张图……)
设A(x1,y1) B(x2,y2).
∵F(0,1)∈AB
∴可设直线AB的方程为 y=kx+1.
可知k≠0 , 又可x1<0,x2>0.
∵向量AF:向量FB=1:2
∴有-2x1=x2 即 2x1+x2=0.
联立{y=kx+1, 4x?+3y?=1. 得,(3k?+4)x?+6kx-9=0.
由求根公式得, x1=[-3k-6√(k?+1)]/(3k?+4)
x2=[-3k+6√(k?+1)]/(3k?+4).
又∵2x1+x2=0
∴有[-6k-12√(k?+1)]/(3k?+4)+ [-3k+6√(k?+1)]/(3k?+4)=0.
化简得,5k?=4
∴k?=4/5.
解得,k=2√5/5 或 -2√5/5
即:所求直线方程为 2√5x-5y+5=0 或
2√5x+5y-5=0.
第5是2004年重庆高考题,本想给你发文档了,但加不上好友,自己搜吧
重庆高考文科数学2013年,第19题第二问,有一处看不懂。。求指点,谢谢!
今天小编辑给各位分享2022高考数学题及答案的知识,其中也会对2020高考数学题及答案解析分析解答,如果能解决你想了解的问题,关注本站哦。
2022年全国乙卷高考数学试题答案
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。
2022年全国乙卷高考数学试题答案
全面认识你自己
认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。
首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。
其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。
最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。
高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。
与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。
此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。
在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。
考生个人特征情况
考生个人特征如兴趣、特长、志向、能力、职业价值观等。
兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。
特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。
志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。
能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。
职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。
2022年全国乙卷高考数学试题答案相关文章:
★2022高考全国乙卷试题及答案
★2022高考理科数学乙卷试题解析
★2022年全国乙卷高考理科数学
★2022年全国乙卷文科数学卷真题公布
★2022年高考数学试题及答案
★2022年全国乙卷高考数学真题及答案
★2022年全国理科数学卷试题答案及解析
★2022全国Ⅰ卷高考数学试题及参考答案一览
★2022年英语全国乙卷试题及答案
★2022年高考乙卷数学真题试卷
2022年全国新高考1卷数学试题及答案解析
数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案解析。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学试题答案解析
高考数学复习主干知识点汇总:
因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:
1.函数
函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。
2.三角函数
三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。
3.立体几何
承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。
4.数列与极限
数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。
5.解析几何
直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。
2022年全国新高考1卷数学试题及答案解析相关文章:
★2022高考甲卷数学真题试卷及答案
★2022年新高考Ⅱ卷数学真题试卷及答案
★2022高考全国甲卷数学试题及答案
★2022高考数学大题题型总结
★2022全国乙卷理科数学真题及答案解析
★2022年全国乙卷高考数学试卷
★2022年新高考1卷语文真题及答案解析
★全国新高考一卷2022语文试题及答案一览
★2022江西高考文科数学试题及答案
★2022全国新高考II卷语文试题及答案解析
2022年全国新高考1卷数学试题及答案详解
高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学答案详解
2022高考数学知识点总结
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式
②根据具体问题中的数量关系列不等式并解决简单实际问题
③用数轴表示一元一次不等式的解集
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
一、排列
1定义
从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.
2排列数的公式与性质
排列数的公式:Amn=n
特例:当m=n时,Amn=n!=n×3×2×1
规定:0!=1
二、组合
1定义
从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合
从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
2比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
三、排列组合与二项式定理知识点
1.计数原理知识点
①乘法原理:N=n1·n2·n3·nM②加法原理:N=n1+n2+n3++nM
2.排列与组合
Anm=n-=n!/!Ann=n!
Cnm=n!/!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法
插空法间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
把具体问题转化或归结为排列或组合问题;
通过分析确定运用分类计数原理还是分步计数原理;
分析题目条件,避免“选取”时重复和遗漏;
列出式子计算和作答.
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想.
4.二项式定理知识点:
①n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3++Cnran-rbr+-+Cnn-1abn-1+Cnnbn
特别地:n=1+Cn1x+Cn2x2++Cnrxr++Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
二项式系数在中间。
所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4++Cnr++Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1
③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
6.注意二项式系数与项的系数的区别,在求某几项的系数的和时注意赋值法的应用。
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2。整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差→变形→判断符号。
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力
2022年全国新高考1卷数学试题及答案详解相关文章:
★2022高考北京卷数学真题及答案解析
★2022高考甲卷数学真题试卷及答案
★2022北京卷高考文科数学试题及答案解析
★2022高考全国甲卷数学试题及答案
★2022年新高考Ⅱ卷数学真题试卷及答案
★2022全国乙卷理科数学真题及答案解析
★2022高考数学大题题型总结
★2022年高考全国一卷作文预测及范文
★2022年高考数学必考知识点总结最新
★2022年全国乙卷高考数学试卷
2022年北京高考数学试题及参考答案
相比很多同学在高考过后的第一时间就是找答案核对,虽然知道这样可能会影响心情,但还是忍不住想要对照答案。下面是我为大家整理的关于2022年北京高考数学试题及参考答案,如果喜欢可以分享给身边的朋友喔!
2022年北京高考数学试题
2022年北京高考数学试题参考答案
高考数学答题策略
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
一、会做与得分的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。
二、审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题的方向。
三、难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
四、快与准的关系
在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
2022年北京高考数学试题及参考答案相关文章:
★2022数学高考题及答案
★2022新高考数学Ⅰ卷试卷及参考答案
★2022年全国Ⅰ卷高考数学试题及参考答案公布
★2022全国一卷高考数学试题及答案
★2022新高考全国一卷数学试卷及答案解析
★2022年高考数学试题及答案
★2022全国新高考Ⅰ卷数学卷完整试题及答案一览
★2022新高考全国一卷数学试卷答案解析
★2022年高考数学全国乙卷试题答案
★2022新高考数学试题及答案详解
在四棱锥P-ABCD中,PA⊥底面ABCD,则面PAC⊥面ABCD
在△PAC中作FG⊥AC交于F点,则FG⊥面ABCD
FG/PA=CF/CP=CF/(CF+FP)=1/8
FG=1/8PA
又FG垂直面ABCD,
则FG为三棱锥F-BCD的高