您现在的位置是: 首页 > 教育资讯 教育资讯
北京高考数学答案解析-北京高考数学第8题
tamoadmin 2024-08-17 人已围观
简介1.2021年高考数学试题权威评析来了2.高考数学压轴题多少分?3.2022年全国新高考1卷数学试题及答案详解4.2023高考数学最后一题多少分5.数学高考2021年高考数学试题权威评析来了 2021年高考数学试题权威评析来了 2021年高考数学试题权威评析来了,数学科落实高考内容改革总体要求,贯彻德智体美劳全面发展的教育方针,聚焦核心素养,突出关键能力考查,
1.2021年高考数学试题权威评析来了
2.高考数学压轴题多少分?
3.2022年全国新高考1卷数学试题及答案详解
4.2023高考数学最后一题多少分
5.数学高考
2021年高考数学试题权威评析来了
2021年高考数学试题权威评析来了
2021年高考数学试题权威评析来了,数学科落实高考内容改革总体要求,贯彻德智体美劳全面发展的教育方针,聚焦核心素养,突出关键能力考查,体现了高考数学的科学选拔功能和育人导向作用。
2021年高考数学试题权威评析来了12021年教育部考试中心命制了全国甲、乙卷的文、理科数学试卷,新高考Ⅰ卷、Ⅱ卷的数学试卷(不分文理),共6套数学试卷。
数学科落实高考内容改革总体要求,贯彻德智体美劳全面发展的教育方针,聚焦核心素养,突出关键能力考查,体现了高考数学的科学选拔功能和育人导向作用。试题突出数学本质,重视理性思维,坚持素养导向、能力为重的命题原则;倡导理论联系实际、学以致用,关注我国社会主义建设和科学技术发展的重要成果,设计真实问题情境,体现数学的应用价值。试卷稳步推进改革,科学把握必备知识与关键能力的关系,科学把握数学题型的开放性与数学思维的开放性,稳中求新,全面体现了基础性、综合性、应用性和创新性的考查要求。
一、发挥学科特色,彰显教育功能
高考数学命题始终坚持思想性与科学性的高度统一,发挥数学应用广泛、联系实际的学科特点,命制具有教育意义的试题以增强学生社会责任感,引导学生形成正确的人生观、价值观、世界观。试题运用我国社会主义建设和科技发展的重大成就作为试题情境,深入挖掘我国社会经济建设和科技发展等方面的学科素材,引导学生关注我国社会现实与经济、科技进步与发展,增强民族自豪感与自信心,增强国家认同,增强理想信念与爱国情怀。
1.关注科技发展与进步。新高考Ⅱ卷第4题以我国航天事业的重要成果北斗三号全球卫星导航系统为试题情境设计立体几何问题,考查考生的空间想象能力和阅读理解、数学建模的素养。
2.关注社会与经济发展。乙卷理科第6题以北京冬奥会志愿者的培训为试题背景,考查逻辑推理能力和运算求解能力。新高考Ⅰ卷第18题以“一带一路”知识竞赛为背景,考查了考生对概率统计基本知识的理解与应用。甲卷文、理科第2题以我国在脱贫攻坚工作取得全面胜利和农村振兴为背景,通过图表给出了某地农户家庭收入情况的抽样调查结果,以此设计问题,考查考生分析问题和数据处理的能力。
3.关注优秀传统文化。乙卷理科第9题以魏晋时期我国数学家刘徽的著作《海岛算经》中的测量方法为背景,考查考生综合运用知识解决问题的能力,让考生充分感悟到我国古代数学家的聪明才智。新高考Ⅰ卷第16题以我国传统文化剪纸艺术为背景,让考生体验从特殊到一般的探索数学问题的过程,重点考查考生灵活运用数学知识分析问题的能力。
二、坚持开放创新,考查关键能力
2020年10月,中央院《深化新时代教育评价改革总体方案》提出:稳步推进中高考改革,构建引导学生德智体美劳全面发展的考试内容体系,改变相对固化的试题形式,增强试题开放性,减少死记硬背和“机械刷题”现象。数学科高考积极贯彻《总体方案》要求,加大开放题的创新力度,利用开放题考查数学学科核心素养和关键能力,发挥数学科高考的选拔功能。
1.“举例问题”灵活开放。如新高考Ⅱ卷第14题的答案是开放的,给不同水平的考生提供了充分发挥自己数学能力的空间,在考查思维的灵活性方面起到了很好的作用。高考乙卷文、理科第16题有多组正确答案,有多种解题方案可供选择,考查了考生的空间想象能力,具有较好的选拔性。
2. “结构不良问题”适度开放。如甲卷理科第18题,试题给出部分已知条件,要求考生根据试题要求构建一个命题,给考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象。新高考Ⅱ卷第22题第(2)问体现了“结构不良问题”适度开放命题的科学性与素养导向、能力为重的命题原则,对逻辑推理能力、数学抽象能力、直观想象能力等作了很深入地考查,既有利于选拔,也有利于考生发挥好自己的数学能力水平。
3.“存在问题”有序开放。如新高考Ⅱ卷第18题设计具有开放性,基于课程标准,重点考查考生的逻辑推理能力和运算求解题能力,在体现开放性的同时也体现了思维的准确性与有序性。新高考Ⅰ卷第21题第(2)问有序开放问题探索的内容,要求考生运用解析几何的基本思想方法分析问题和解决问题,考查考生在开放的情境中发现主要矛盾的能力。
三、倡导理论联系实际,学以致用
2021年数学科高考在应用性进行重点探索,取得突破。试题注重理论联系实际,体现数学的应用价值,并让学生感悟到数学的应用之美。理论联系实际的试题,体现现代科技发展和现代社会生产等方面的特点,有机渗透数学建模、数据分析、逻辑推理等数学核心素养与数学思想方法的应用,对选拔与育人具有积极的意义。
1.取材真实情境,解决实践问题
如新高考Ⅱ卷第21题取材于生命科学中真实的问题,体现了概率在生命科学中的应用。试题考查了数学抽象、直观想象、逻辑推理等数学核心素养,重点考查了考生综合应用概率、数列、方程、函数等知识和方法解决实际问题的能力,体现了 “基础性,综合性,应用性,创新性”的考查要求。甲卷理科第8题以测量珠穆朗玛峰高程的方法之一——三角高程测量法为背景设计,情境真实,突出理论联系实际,要求考生能正确应用线线关系、线面关系、点面关系等相关几何知识,构建计算模型,同时考查了考生运用正弦定理等解三角形的知识和方法解决实际问题的能力。
2.关注青少年身心健康
身心健康是素质教育的核心内容,在高考评价体系的核心价值指标体系中,包含有健康情感的指标,要求学生具有健康意识,注重增强体质,健全人格,锻炼意志。数学试题对相关内容也有所体现。如高考甲卷理科第4题(文科第6题),以社会普遍关注的青少年视力问题为背景设计,重点考查了考生的数学理解能力和运算求解能力。
3. 关注现实生产生活
如高考乙卷文、理科第17题,以芯片生产中的刻蚀速率为原型,设计了概率统计的应用问题,考查了考生对于平均数、方差等知识的理解和应用,引导考生树立正确的人生观、价值观。新高考Ⅱ卷第6题,以某物理量的测量为背景,考查了正态分布基本知识的理解与应用,引导学生重视数学实验,重视数学的应用。
2021年数学试题很好地落实了“立德树人,服务选才,引导教学”的`核心功能,坚持高考的核心价值,突出学科特色,重视数学本质,发挥了数学科高考的选拔功能,对深化中学数学教学改革发挥了积极的导向作用。
2021年高考数学试题权威评析来了2高考第一天结束后,哪些事情应该避免讨论?
1、不要讨论高考试卷,不要讨论题目的答案。
在这里,笔者用两个“不要”来做出解答。高考第一天一般考语文和数学,当第一天考试结束之后,学生会陆续离开考场,和自己的同学或者父母见面。这时候,大量的同学依照次序走出校门,然后大部分同学们会聚在一起,讨论高考的试卷以及高考的题目以及答案。
尤其是一些学习成绩中等的考生,他们对于自己的答案不确定,因此会参考学习成绩好的同学,看看自己的答案是否与他们相同,这种情况和现象是高考第一天结束之后的大忌。第一天高考结束之后,同学们不要讨论高考试卷,也不要讨论题目的答案,因为每个人的答案都是不一样的,当得知自己做错之后,心理会非常着急,后悔自己为什么答错了,这样的消极情绪会一直保持到第二天考试,因此考生要注意,第一天高考结束,不要讨论高考试卷,不要讨论题目的答案。
2、不要给自己估分。
很多同学有一个习惯,那是在平时学校考试的时候养成的,那就是每当考试结束之后都会自己估分,看一下自己的估分跟真实分数是否一致或者相差多少。而一个习惯一旦养成就很难改掉了。高考第一天结束之后,也有不少同学会在心底里为自己估分,好大致判断第一天的高考成绩。
如果平时估分的话还可以理解,但是在高考的时候,估分会对自己的心理造成很大的负担,如果考试顺利还好,做题比较顺畅,正确率比较高,这是一个正向的促进作用。一旦考试出现了失误,那个估分的时候就比较低,考生心理会承受一个很大的压力,这是不利于第二天参加高考的。
因此每一位考生都应该明白以上这两点,考试第一天结束后不要讨论高考试卷,不要讨论题目的答案,也不要随意给自己估分,这是对第二天的考试不利的。就算同学们想要讨论,那么等到高考全部结束之后再讨论,这是可以的。毕竟高考都结束了,讨论一下题目也不会影响你的发挥,也不会对你的成绩造成影响。希望大家可以将文章传递给你的好友,让我们祝愿2020年高三考生心想事成,前程似锦!
高考数学压轴题多少分?
12分。高考数学的压轴题有2问,第一问相对简单,4分,第二问相对较难,8分,总分是12分。第一问考查比较基础的知识,大多数同学可以得分;第二问的思路寻找有难度,计算量较大,中等程度用心做的话可拿到6分。
2022年全国新高考1卷数学试题及答案详解
高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学答案详解
2022高考数学知识点 总结
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式(组)
②根据具体问题中的数量关系列不等式(组)并解决简单实际问题
③用数轴表示一元一次不等式(组)的解集
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查 抽象思维 能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示 方法 的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新 热点 ”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
一、排列
1定义
(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.
2排列数的公式与性质
(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)
特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1
规定:0!=1
二、组合
1定义
(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合
(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
2比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
三、排列组合与二项式定理知识点
1.计数原理知识点
①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)
2.排列(有序)与组合(无序)
Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
Cnm=n!/(n-m)!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=(k+1)!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)
插空法(解决相间问题)间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
(1)把具体问题转化或归结为排列或组合问题;
(2)通过分析确定运用分类计数原理还是分步计数原理;
(3)分析题目条件,避免“选取”时重复和遗漏;
(4)列出式子计算和作答.
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想.
4.二项式定理知识点:
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)
所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与 其它 知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力
2022年全国新高考1卷数学试题及答案详解相关 文章 :
★ 2022高考北京卷数学真题及答案解析
★ 2022高考甲卷数学真题试卷及答案
★ 2022北京卷高考文科数学试题及答案解析
★ 2022高考全国甲卷数学试题及答案
★ 2022年新高考Ⅱ卷数学真题试卷及答案
★ 2022全国乙卷理科数学真题及答案解析
★ 2022高考数学大题题型总结
★ 2022年高考全国一卷作文预测及范文
★ 2022年高考数学必考知识点总结最新
★ 2022年全国乙卷高考数学(理科)试卷
2023高考数学最后一题多少分
各个地区不同,一般12-14分,3问最后一问一般5分,2问一般6-8分。
高考数学压轴题一般也就是最后一道题目,这也是高考数学里面最难的一道题目,一般是函数与其他知识结合出题,可以说完全做对的人寥寥无几。高考数学压轴题一般考函数、椭圆、双曲线、抛物线、解析几何、数列等,尤其是前4个更是让很多考生头疼,即使不在压轴题的的地方出现,也让考生们望而生畏。
高考数学最难的部分就是函数,也只有函数的知识点能难得住全国几百上千万的考生。高中函数是最复杂的知识点,考点也比较多,完全掌握起来比较困难,而且函数考点往往和其他知识结合在一起考,这也加大了题目的难度。
数学压轴题究竟有多难
高考数学压轴题确实的最难的,这也是为了区分高考难度的一道题目,或许光靠说可能没有信服力,说一个数据大家就一目了然了。35万人,其中9人压轴题满分,几万分之一的概率,这个难度可想而知。且不说多少人能做对,光是看答案就需要看半天,而且能看懂答案的人也为数不多。不少考生对高考数学压轴题都是不敢尝试去做的,首先在气势上就被吓跑了,更谈不上能不能得分。
然而,我们拿不了满分不重要,重要的是我们能得分就够了,对于那些自认为数学还不错的学生,第一问有时间还是可以去做的,做对也不难,为什么不争取一下呢,数学也要分分必争的。
数学高考
(Ⅲ)范例分析
b)∈M,且对M中的其它元素(c,d),总有c≥a,则a=____.
分析:读懂并能揭示问题中的数学实质,将是解决该问题的突破口.怎样理解“对M中的其它元素(c,d),总有c≥a”?M中的元素又有什么特点?
解:依题可知,本题等价于求函数x=f(y)=(y+3)?|y-1|+(y+3)
(2)当1≤y≤3时,
所以当y=1时,xmin=4.
说明:题设条件中出现集合的形式,因此要认清集合元素的本质属性,然后结合条件,揭示其数学实质.即求集合M中的元素满足关系式
例2.解关于 的不等式:
分析:本例主要复习含绝对值不等式的解法,分类讨论的思想。本题的关键不是对参数 进行讨论,而是去绝对值时必须对末知数进行讨论,得到两个不等式组,最后对两个不等式组的解集求并集,得出原不等式的解集。
解:当
例3. 己知三个不等式:① ② ③
(1)若同时满足①、②的 值也满足③,求m的取值范围;
(2)若满足的③ 值至少满足①和②中的一个,求m的取值范围。
分析:本例主要综合复习整式、分式不等式和含绝对值不等的解法,以及数形结合思想,解本题的关键弄清同时满足①、②的 值的满足③的充要条件是:③对应的方程的两根分别在 和 内。不等式和与之对应的方程及函数图象有着密不可分的内在联系,在解决问题的过程中,要适时地联系它们之间的内在关系。
解:记①的解集为A,②的解集为B,③的解集为C。
解①得A=(-1,3);解②得B=
(1) 因同时满足①、②的 值也满足③,A B C
设 ,由 的图象可知:方程的小根小于0,大根大于或等于3时,即可满足
(2) 因满足③的 值至少满足①和②中的一个, 因
此 小根大于或等于-1,大根小于或等于4,因而
说明:同时满足①②的x值满足③的充要条件是:③对应的方程2x +mx-1=0的两根分别在(-∞,0)和[3,+∞)内,因此有f(0)<0且f(3)≤0,否则不能对A∩B中的所有x值满足条件.不等式和与之对应的方程及图象是有着密不可分的内在联系的,在解决问题的过程中,要适时地联系它们之间的内在关系.
例4.已知对于自然数a,存在一个以a为首项系数的整系数二次三项式,它有两个小于1的正根,求证:a≥5.
分析:回忆二次函数的几种特殊形式.设f(x)=ax +bx+c(a≠0).①
顶点式.f(x)=a(x-x ) +f(x )(a≠0).这里(x ,f(x ))是二次函数的顶点,x =
))、(x ,f(x ))、(x ,f(x ))是二次函数图象上的不同三点,则系数a,b,c可由
证明:设二次三项式为:f(x)=a(x-x )(x-x ),a∈N.
依题意知:0<x <1,0<x <1,且x ≠x .于是有
f(0)>0,f(1)>0.
又f(x)=ax -a(x +x )x+ax x 为整系数二次三项式,
所以f(0)=ax x 、f(1)=a?(1-x )(1-x )为正整数.故f(0)≥1,f(1)≥1.
从而 f(0)?f(1)≥1. ①
另一方面,
且由x ≠x 知等号不同时成立,所以
由①、②得,a >16.又a∈N,所以a≥5.
说明:二次函数是一类被广泛应用的函数,用它构造的不等式证明问题,往往比较灵活.根据题设条件恰当选择二次函数的表达形式,是解决这类问题的关键.
例5.设等差数列{a }的首项a1>0且Sm=Sn(m≠n).问:它的前多少项的和最大?
分析:要求前n项和的最大值,首先要分析此数列是递增数列还是递减数列.
解:设等差数列{a }的公差为d,由Sm=Sn得
ak≥0,且ak+1<0.
(k∈N).
说明:诸多数学问题可归结为解某一不等式(组).正确列出不等式(组),并分析其解在具体问题的意义,是得到合理结论的关键.
例6.若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围.
分析:要求f(-2)的取值范围,只需找到含人f(-2)的不等式(组).由于y=f(x)是二次函数,所以应先将f(x)的表达形式写出来.即可求得f(-2)的表达式,然后依题设条件列出含有f(-2)的不等式(组),即可求解.
解:因为y=f(x)的图象经过原点,所以可设y=f(x)=ax2+bx.于是
解法一(利用基本不等式的性质)
不等式组(Ⅰ)变形得
(Ⅰ)所以f(-2)的取值范围是[6,10].
解法二(数形结合)
建立直角坐标系aob,作出不等式组(Ⅰ)所表示的区域,如图6中的阴影部分.因为f(-2)=4a-2b,所以4a-2b-f(-2)=0表示斜率为2的直线系.如图6,当直线4a-2b-f(-2)=0过点A(2,1),B(3,1)时,分别取得f(-2)的最小值6,最大值10.即f(-2)的取值范围是:6≤f(-2)≤10.
解法三(利用方程的思想)
又f(-2)=4a-2b=3f(-1)+f(1),而
1≤f(-1)≤2,3≤f(1)≤4, ①
所以 3≤3f(-1)≤6. ②
①+②得4≤3f(-1)+f(1)≤10,即6≤f(-2)≤10.
说明:(1)在解不等式时,要求作同解变形.要避免出现以下一种错解:
2b,8≤4a≤12,-3≤-2b≤-1,所以 5≤f(-2)≤11.
(2)对这类问题的求解关键一步是,找到f(-2)的数学结构,然后依其数学结构特征,揭示其代数的、几何的本质,利用不等式的基本性质、数形结合、方程等数学思想方法,从不同角度去解决同一问题.若长期这样思考问题,数学的素养一定会迅速提高.
例7.(2002 江苏)己知 ,
(1)
(2) ,证明:对任意 , 的充要条件是 ;
(3) 讨论:对任意 , 的充要条件。
证明:(1)依题意,对任意 ,都有
(2)充分性:
必要性:对任意
(3)
即
而当
例8.若a>0,b>0,a3+b3=2.求证a+b≤2,ab≤1.
分析:由条件a3+b3=2及待证的结论a+b≤2的结构入手,联想它们之间的内在联系,不妨用作差比较法或均值不等式或构造方程等等方法,架起沟通二者的“桥梁”.
证法一 (作差比较法)
因为a>0,b>0,a3+b3=2,所以
(a+b)3-23=a3+b3+3a2b+3ab2-8=3a2b+3ab2-6
=3[ab(a+b)-2]=3[ab(a+b)-(a3+b3)]=-3(a+b)(a-b)2≤0,
即 (a+b)3≤23.
证法二 (平均值不等式—综合法)
因为a>0,b>0,a3+b3=2,所以
所以a+b≤2,ab≤1.
说明:充分发挥“1”的作用,使其证明路径显得格外简捷、漂亮.
证法三 (构造方程)
设a,b为方程x2-mx+n=0的两根.则
因为a>0,b>0,所以m>0,n>0且Δ=m2-4n≥0.①
因此2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m[m2-3n],所以
所以a+b≤2.
由2≥m得4≥m2,又m2≥4n,所以4≥4n,即n≤1.所以 ab≤1.
说明:认真观察不等式的结构,从中发现与已学知识的内在联系,就能较顺利地找到解决问题的切入点.
证法四 (恰当的配凑)
因为a>0,b>0,a3+b3=2,所以
2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=ab(a+b),
于是有6≥3ab(a+b),从而
8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=(a+b)3,
所以a+b≤2.(以下略)
即a+b≤2.(以下略)
证法六 (反证法)
设a+b>2,则
a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]>2(22-3ab).
因为a3+b3=2,所以2>2(4-3ab),因此ab>1. ①
另一方面,2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=(a+b)?ab>2ab,
所以ab<1. ②
于是①与②矛盾,故a+b≤2.(以下略)
说明:此题用了六种不同的方法证明,这几种证法都是证明不等式的常用方法.
例9.设函数f(x)=ax2+bx+c的图象与两直线y=x,y=-x,均不相
分析:因为x∈R,故|f(x)|的最小值若存在,则最小值由顶点确定,故设f(x)=a(x-x0)2+f(x0).
证明:由题意知,a≠0.设f(x)=a(x-x0)2+f(x0),则
又二次方程ax2+bx+c=±x无实根,故
Δ1=(b+1)2-4ac<0,
Δ2=(b-1)2-4ac<0.
所以(b+1)2+(b-1)2-8ac<0,即2b2+2-8ac<0,即
b2-4ac<-1,所以|b2-4ac|>1.
说明:从上述几个例子可以看出,在证明与二次函数有关的不等式问题时,如果针对题设条件,合理取二次函数的不同形式,那么我们就找到了一种有效的证明途径.
例10.(2002理)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同。为了保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?
解:设2001年末的汽车保有量为 ,以后每年末的汽车保有量依次为 ,每年新增汽车 万辆。
由题意得
例11.已知奇函数
知函数
分析:这是一道比较综合的问题,考查很多函数知识,通过恰当换元,使问题转化为二次函数在闭区间上的最值问题。
令
要使
10 当
30当
综上:
例12.如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状。
(1)若最大拱为6米,则隧道设计的拱宽 是多少?
(2)若最大拱不小于6米,则应如何设计拱和拱宽 ,才能使半个椭圆形隧道的土方工程最小?
(半个椭圆的面积公式为s= 柱体体积为:底面积乘以高, , 本题结果均精确到0.1米)
分析:本题为2003年上海高考题,考查运用几何、不等式等解决应用题的能力及运算能力。
解:1)建立如图所示直角坐标系,则P(11,4.5)
椭圆方程为:
将b=h=6与点P坐标代入椭圆方程得
故隧道拱宽约为33.3米
2)由椭圆方程
故当拱高约为6.4米,拱宽约为31.1米时,土方工程量最小.
例13.已知n∈N,n>1.求证
分析:虽然待证不等式是关于自然数的命题,但不一定选用数学归纳法,观其“形”,它具有较好规律,因此不妨用构造数列的方法进行解.
则
说明:因为数列是特殊的函数,所以可以因问题的数学结构,利用函数的思想解决.
例14.已知函数
分析:本例主要复习函数、不等式的基础知识,绝对值不等式及函数不等式的证明技巧。基本思路先将函数不等式转化为代数不等式,利用绝对值不等式的性质及函数的性质。证明(1)再利用二项展开式及基本不等式的证明(2)。
证明:(1)
当且仅当 时,上式取等号。
(2) 时,结论显然成立
当 时,
例15.(2001年全国理)己知
(1)
(2)
证明:(1)
同理
(2)由二项式定理有
因此
。
四、强化训练
1.已知非负实数 , 满足 且 ,则 的最大值是( )
A. B. C. D.
2.已知命题p:函数 的值域为R,命题q:函数
是减函数。若p或q为真命题,p且q为命题,则实数a的取值范围是 ( )
A.a≤1 B.a<2 C.1<a<2 D.a≤1或a≥2
3. 解关于 的不等式 >0
4.求a,b的值,使得关于x的不等式ax2+bx+a2-1≤0的解集分别是:
(1)[-1,2];(2)(-∞,-1]∪[2,+∞);(3){2};(4)[-1,+∞).
5. 解关于 的不等式
6.(2002北京文)数列 由下列条件确定:
(1)证明:对于 ,
(2)证明:对于 .
7.设P=(log2x) +(t-2)log2x-t+1,若t在区间[-2,2]上变动时,P恒为正值,试求x的变化范围.
8.已知数列 中,
b1=1,点P(bn,bn+1)在直线x-y+2=0上。
Ⅰ)求数列
Ⅱ)设 的前n项和为Bn, 试比较 。
Ⅲ)设Tn=
五、参考答案
1.解:画出图象,由线性规划知识可得,选D
2.解:命题p为真时,即真数部分能够取到大于零的所有实数,故二次函数 的判别式 ,从而 ;命题q为真时, 。
若p或q为真命题,p且q为命题,故p和q中只有一个是真命题,一个是命题。
若p为真,q为时,无解;若p为,q为真时,结果为1<a<2,故选C.
3.分析:本题主要复习分式不等式的解法、分类讨论的思想及利用序轴标根法解不等式的基本步骤。本题的关键是对分母分解因式,将原不等式等价转化为
和比较 与 及3的大小,定出分类方法。
解:原不等式化为:
(1) 当 时,由图1知不等式的解集为
(2) 当
(3) 当
4.分析:方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互交通.
解(1) 由题意可知,a>0且-1,2是方程ax2+bx+a2-1≤0的根,所以
(3)由题意知,2是方程ax2+bx+a2-1=0的根,所以
4a+2b+a2-1=0. ①
又{2}是不等式ax2+bx+a2-1≤0的解集,所以
(4)由题意知,a=0.b<0,且-1是方程bx+a2-1=0的根,即-b+a2-1=0,所以
a=0,b=-1.
说明:二次函数与一元二次方程、一元二次不等式之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间相互联系相互渗透,并在一定条件下相互转换。
5.分析:在不等式的求解中,换元法和图解法是常用的技巧,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,数形结合,则可将不等式的解化归为直观,形象的图象关系,对含参数的不等式,运用图解法,还可以使得分类标准更加明晰。
解:设 ,原不等式化为 ,在同一坐标系中作出两函数图象
故(1)当
(2)
(3)当 时,原不等式的解集为φ
综上所述,当 时,解集为 );当 时,解集为
时,解集为φ。
6.证明:(1)
(2)当 时,
=
7.分析:要求x的变化范围,显然要依题设条件寻找含x的不等式(组),这就需要认真思考条件中“t在区间[-2,2]上变动时,P恒为正值.”的含义.你是怎样理解的?如果继续思考有困难、请换一个角度去思考.在所给数学结构中,右式含两个字母x、t,t是在给定区间内变化的,而求的是x的取值范围,能想到什么?
解:设P=f(t)=(log2x-1)t+log22x-2log2x+1.因为 P=f(t)在top直角坐标系内是一直线,所以t在区间[-2,2]上变动时,P恒为正值的充要条件
解得log2x>3或log2x<-1.
说明:改变看问题的角度,构造关于t的一次函数,灵活运用函数的思想,使难解的问题转化为熟悉的问题.
8.分析:本题主要复习数列通项、求和及不等式的有关知识。
略解:Ⅰ)
Ⅱ)Bn=1+3+5+…+(2n-1)=n2
Ⅲ)Tn= ①
②
①-②得