您现在的位置是: 首页 > 教育资讯 教育资讯
高考卷3数学答案_高考卷三2021数学答案
tamoadmin 2024-07-04 人已围观
简介1.2022数学高考试卷(江苏2022数学高考试卷)2.2023高考数学答案什么时候出来3.谁有09年福建省理科高考数学卷的选择题及答案。4.2022年天津高考数学试卷及答案5.2005江西高考数学题及答案6.求2008年江苏高考数学试卷(带答案的)第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1)若A= ,B=
1.2022数学高考试卷(江苏2022数学高考试卷)
2.2023高考数学答案什么时候出来
3.谁有09年福建省理科高考数学卷的选择题及答案。
4.2022年天津高考数学试卷及答案
5.2005江西高考数学题及答案
6.求2008年江苏高考数学试卷(带答案的)
第Ⅰ卷(选择题 共50分)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.
(1)若A= ,B= ,则 =
(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)
答案:C 解析:画数轴易知.
(2)已知 ,则i( )=
(A) (B) (C) (D)
答案:B 解析:直接计算.
(3)设向量 , ,则下列结论中正确的是
(A) (B)
(C) (D) 与 垂直
答案:D 解析:利用公式计算,采用排除法.
(4)过 点(1,0)且与直线x-2y-2=0平行的直线方程是
(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0
答案:A 解析:利用点斜式方程.
(5)设数列{ }的前n项和 = ,则 的值为
(A) 15 (B) 16 (C) 49 (D)
答案:A 解析:利用 =S8-S7,即前8项和减去前7项和.
(6)设abc>0,二次函数f(x)=ax2+bx+c的图像可能是
答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合abc>0产生矛盾,采用排除法易知.
(7)设a= ,b= ,c= ,则a,b,c的大小关系是
(A)a>c>b (B)a>b>c (C)c>a>b (D)b>c>a
答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.
(8)设x,y满足约束条件 则目标 函数z=x+y的最大值是
(A)3 (B) 4 (C) 6 (D)8
答案:C 解析:画出可行域易求.
(9)一个几何体的三视图如图,该几何体的表面积是
(A)372 (C)292
(B)360 (D)280
答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.
(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是
(A) (B) (C) (D)
答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.
数 学(文科)(安徽卷)
第Ⅱ卷(非选择题共100分)
二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置?
(11)命题“存在x∈R,使得x2+2x+5=0”的否定是
答案:对任何X∈R,都有X2+2X+5≠0
解析:依据“存在”的否定为“任何、任意”,易知.
(12)抛物线y2=8x的焦点坐标是
答案:(2,0) 解析:利用定义易知.
(13)如图所示,程序框图(算法流程图)的输出值x=
答案:12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.
(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .
答案:5.7% 解析: , ,易知 .
(15)若a>0 ,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是 . (写出所有正确命题的编号).
①ab≤1; ② + ≤ ; ③a2+b2≥2; ④a3+b3≥3;
答案:①,③,⑤ 解析:①,⑤化简后相同,令a=b=1排除②、易知④ ,再利用 易知③正确
三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.
(16)△ABC的面积是30,内角A,B,C,所对边长分别为a,b,c,cosA= .
(1)求
(2)若c-b= 1,求a的值.
(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.
解:由cosA=1213 ,得sinA= =513 .
又12 bc sinA=30,∴bc=156.
(1) =bc cosA=156?1213 =144.
(2)a2=b2+c2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2?156?(1-1213 )=25,
∴a=5
(17)椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率 .
(1)求椭圆E的方程;
(2)求∠F1AF2的角平分线所在直线的方程.
(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.
解:(1)设椭圆E的方程为 由e=12 ,得ca =12 ,b2=a2-c2 =3c2. ∴ 将A(2,3)代入,有 ,解得:c=2, 椭圆E的方程为
(Ⅱ)由(Ⅰ)知F1(-2,0),F2(2,0),所以直线AF1的方程为 y=34 (X+2),
即3x-4y+6=0. 直线AF2的方程为x=2. 由椭圆E的图形知,
∠F1AF2的角平分线所在直线的斜率为正数.
设P(x,y)为∠F1AF2的角平分线所在直线上任一点,
则有
若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去.
于是3x-4y+6=-5x+10,即2x-y-1=0.
所以∠F1AF2的角平分线所在直线的方程为2x-y-1=0.
18、(本小题满分13分)
某市2010年4月1日—4月30日对空气 污染指数的检测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75 ,81,88,67,101,103,95,91,
77,86,81,83,82,82,,79,86,85,75,71,49,45,
(Ⅰ) 完成频率分布表;
(Ⅱ)作出频率分布直方图;
(Ⅲ)根据国家标准,污 染指数在0~50之间时 ,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
请你依据所给数据和上述标准,对 该市的空气质量给出一个简短评价.
(本小题满分13分)本题考查频数,频数及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和应用意识.
解:(Ⅰ) 频率分布表:
分 组 频 数 频 率
[41,51) 2 230
[51,61) 1 130
[61,71) 4 430
[71,81) 6 630
[81,91) 10 1030
[91,101) 5 530
[101,111) 2 230
(Ⅱ)频率分布直方图:
(Ⅲ)答对下述两条中的一条即可:
(i)该市一个月中空气污染指数有2天处于优的水平,占当月天数的115 . 有26天处于良好的水平,占当月天数的1315 . 处于优或良的天数共有28天,占当月天数的1415 . 说明该市空气质量基本良好.
(ii)轻微污染有2天,占当月天数的115 . 污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730 ,超过50%. 说明该市空气质量有待进一步改善.
(19) (本小题满分13分)
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,E F∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,
(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求证:AC⊥平面EDB;
(Ⅲ)求四面体B—DEF的体积;
(本小题满分13分)本题考查空间线面平行,线面垂直,面面垂直,体积的计算等基础知识,同时考查空间想象能力与推理论证能力.
(Ⅰ) 证:设AC与BD交于点G,则G为AC的中点. 连EG,GH,由于H为BC的中点,故GH∥AB且 GH= AB 又EF∥AB且 EF= AB
∴EF∥GH. 且 EF=GH ∴四边形EFHG为平行四边形.
∴EG∥FH,而EG 平面EDB,∴FH∥平面EDB.
(Ⅱ)证:由四边形ABCD为正方形,有AB⊥BC.
又EF∥AB,∴ EF⊥BC. 而EF⊥FB,∴ EF⊥平面BFC,∴ EF⊥FH.
∴ AB⊥FH.又BF=FC H为BC的中点,FH⊥BC.∴ FH⊥平面ABCD.
∴ FH⊥AC. 又FH∥EG,∴ AC⊥EG. 又AC⊥BD,EG∩BD=G,
∴ AC⊥平面EDB.
(Ⅲ)解:∵ EF⊥FB,∠BFC=90°,∴ BF⊥平面CDEF.
∴ BF为四面体B-DEF的高. 又BC=AB=2, ∴ BF=FC=
(20)(本小题满分12分)
设函数f(x)= sinx-cosx+x+1, 0﹤x﹤2 ,求函数f(x)的单调区间与极值.
(本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力.
解:由f(x)=sinx-cosx+x+1,0﹤x﹤2 ,
知 =cosx+sinx+1,
于是 =1+ sin(x+ ).
令 =0,从而sin(x+ )=- ,得x= ,或x=32 .
当x变化时, ,f(x)变化情况如下表:
X (0, )
( ,32 )
32
(32 ,2 )
+ 0 - 0 +
f(x) 单调递增↗ +2
单调递减↘ 32
单调递增↗
因此,由上表知f(x)的单调递增区间是(0, )与(32 ,2 ),单调递减区间是( ,32 ),极小值为f(32 )=32 ,极大值为f( )= +2.
(21)(本小题满分13分)
设 , ..., ,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y= x相切,对每一个正整数n,圆 都与圆 相互外切,以 表示 的半径,已知 为递增数列.
(Ⅰ)证明: 为等比数列;
(Ⅱ)设 =1,求数列 的前n项和.
(本小题满分13分)本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象能力以及推理论证能力.
解:(Ⅰ)将直线y= x的倾斜角记为 , 则有tan = ,sin = 12 .
设Cn的圆心为( ,0),则由题意知 = sin = 12 ,得 = 2 ;同理 ,题意知 将 = 2 代入,解得 rn+1=3rn.
故{ rn }为公比q=3的等比数列.
(Ⅱ)由于r1=1,q=3,故rn=3n-1,从而 =n? ,
记Sn= , 则有 Sn=1+2?3-1+3?3-2+………+n? . ①
=1?3-1+2?3-2+………+(n-1) ? +n? . ② ①-②,得
=1+3-1 +3-2+………+ -n? = - n? = –(n+ )?
Sn= – (n+ )? .
2022数学高考试卷(江苏2022数学高考试卷)
绝密*启用前
2012年普通高等学校招生全国统一考试(新课标卷)
文科数学
新课标(宁、吉、黑、晋、豫、新)试卷
注息事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动.用橡皮擦干净后,再选涂其它答案标号。写在本试卷上无效.
3.回答第Ⅱ卷时。将答案写在答题卡上.写在本试卷上无效·
4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x|x2-x-2<0},B={x|-1<x<1},则
(A)AB (B)BA (C)A=B (D)A∩B=?
(2)复数z=的共轭复数是
(A)2+i (B)2-i (C)-1+i (D)-1-i
3、在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为
(A)-1 (B)0 (C) (D)1
(4)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为( )
(A) (B) (C) (D)
5、已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是
(A)(1-,2) (B)(0,2) (C)(-1,2) (D)(0,1+)
(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则
(A)A+B为a1,a2,…,aN的和
(B)为a1,a2,…,aN的算术平均数
(C)A和B分别是a1,a2,…,aN中最大的数和最小的数
(D)A和B分别是a1,a2,…,aN中最小的数和最大的数
开始
A=x
B=x
x>A
否
输出A,B
是
输入N,a1,a2,…,aN
结束
x<B
k≥N
k=1,A=a1,B=a1
k=k+1
x =ak
是
否
否
是
(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为
(A)6
(B)9
(C)12
(D)18
(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为
(A)π (B)4π (C)4π (D)6π
(9)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=
(A) (B) (C) (D)
(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为
(A) (B)2 (C)4 (D)8
(11)当0<x≤时,4x<logax,则a的取值范围是
(A)(0,) (B)(,1) (C)(1,) (D)(,2)
(12)数列{an}满足an+1+(-1)n an =2n-1,则{an}的前60项和为
(A)3690 (B)3660 (C)1845 (D)1830
第Ⅱ卷
本卷包括必考题和选考题两部分。第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。
二.填空题:本大题共4小题,每小题5分。
(13)曲线y=x(3lnx+1)在点(1,1)处的切线方程为________
(14)等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q=_______
(15)已知向量a,b夹角为45° ,且|a|=1,|2a-b|=,则|b|=
(16)设函数f(x)=的最大值为M,最小值为m,则M+m=____
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知a,b,c分别为△ABC三个内角A,B,C的对边,c = asinC-ccosA
(1) 求A
(2) 若a=2,△ABC的面积为,求b,c
18.(本小题满分12分)
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n
14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10
(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。
(19)(本小题满分12分)
如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点
(I)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比。
(20)(本小题满分12分)
设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点。
(I)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;
(II)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值。
(21)(本小题满分12分)
设函数f(x)= ex-ax-2
(Ⅰ)求f(x)的单调区间
(Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f?(x)+x+1>0,求k的最大值
请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号。
(22)(本小题满分10分)选修4-1:几何证明选讲
如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF//AB,证明:
(Ⅰ)CD=BC;
(Ⅱ)△BCD∽△GBD
(23)(本小题满分10分)选修4—4;坐标系与参数方程
已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A、B、C、D以逆时针次序排列,点A的极坐标为(2,)
(Ⅰ)求点A、B、C、D 的直角坐标;
(Ⅱ)设P为C1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围。
(24)(本小题满分10分)选修4—5:不等式选讲
已知函数f(x) = |x + a| + |x-2|.
(Ⅰ)当a =-3时,求不等式f(x)≥3的解集;
(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围。
参考答案
2023高考数学答案什么时候出来
今天小编辑给各位分享2022数学高考试卷的知识,其中也会对江苏2022数学高考试卷分析解答,如果能解决你想了解的问题,关注本站哦。
你如何评价2022新高考数学试卷,今年题目难度如何,有哪些变化?
今年的高考数学居然可以说是地狱级别的难度,而且这次的试卷让很多人都非常的崩溃,也让很多人觉得这种题目根本就让人看不下去,让人非常的愤怒。题型发生了变化,出题的模式也发生了变化,对于一些题目的题型发生了改变,而且还引用了一些实时的新闻,能够通过一些新闻来增加答题的具体性,也能够吸引人们的关注。
2022全国新高考1卷数学难吗?压轴题有何立意?
对于这个高考的试卷题是非常的难的,因为这次的高考的试卷的题目基本上都是来自于那些非常偏非常难的题,那么正是为了测试这些学生的水平而设立的题目,因为正式的考试是为了选拔这些学生的一次考试,那么这仍然是选择了那些非常偏的题,那么一般来说这些学生在上课的时候都是不会去做那种非常偏非常难的题,那么出现了这种非常难非常偏的题的话,那么这些学生就会遇到了困难,至于压轴题的话,压轴题就是更难的,一般压轴题都需要考验一个学生的逻辑思维能力,去做这个题,那么才能够把这个题目给做出来的
选拔性考试
一般来说这个高考的数学试题呢,那么都是以选拔这些学生的一种难度来出的那么自然人是非常的难的,特别考验这些学生的逻辑思维能力,以运用这个知识的这个能力,并不像填空题一样,只要把这个答案填进去就OK了那么一般来说这数学试题呢,都是很考验这些学生的数学逻辑思维,而运用这个知识的能力的,而且是需要灵活的运用这个知识去写这些题目的,所以说就在这个高考的数学试题是非常的难的
压轴题的意义
一般来说呢,压轴题更是最难的一道题,毕竟是压轴的嘛,所以说难度是升了一个阶段的,那么也是很正常,毕竟一张试卷的压轴题,无论是什么试卷的压轴题那么都是非常的难审正常的事情,因为到了压轴题之后那么一般都是考验学生的灵活运用知识的逻辑思维能力,基本上都要运用上去,那么才能够把这道题给做出来,而且所需要的知识量也是非常的大的
总的来说那么高考数学试卷的题目都是非常的难,是考验这些学生灵活的运用知识的一个题目,那么需要这些学生非常的努力的去运用自己所学的知识,不仅仅所需要的知识,还需要自己灵活运用知识的能力,那么才能够将这些题目做出来
2022年天津高考数学试卷及答案
为了帮助大家全面了解2022年天津高考数学卷,大家就能知道2022年天津高考数学难不难?有哪些题型?考了哪些知识点?以及数学试卷的解题思路和方法有哪些?下面是我给大家带来的2022年天津高考数学试卷及答案,以供大家参考!
2022年天津高考数学试卷
截止目前,2022年天津高考数学试卷还未出炉,待高考结束后,力力会第一时间更新2022年天津高考数学试卷,供大家对照、估分、模拟使用。
2022年天津高考数学答案解析
截止目前,2022年天津高考数学答案解析还未出炉,待高考结束后,力力会第一时间更新2022年天津高考数学答案解析,供大家对照、估分、模拟使用。
高考录取规则及志愿设置
志愿设置
提前艺术、体育本科设置1个第一院校志愿和1个第二院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;
提前一批本科和提前二批本科批次分别设置1个第一院校志愿、1个第二院校志愿和1个第三院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
本科面向贫困地区专项计划第一、二批次分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;
免费医学定向生、农科生院校设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。
第一批本科批次分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;
第一批本科特殊类型招生分公示类和非公示类各设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。
第一批本科艺术本科院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科类批次设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科艺术、体育类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科C类艺术、体育类院校分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科特殊类型招生各设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。
高本贯通批次设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
高本贯通艺术类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。
提前专科批次设置1个第一院校志愿、1个第二院校志愿和1个第三院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
专科批次设置9个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H、I,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
专科批次艺术、体育类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。
录取原则
高校招生实行两种投档模式。
平行志愿投档模式:根据“考生之间,分数优先;考生志愿,遵循顺序”的投档原则,先分科类将考生按成绩从高分到低分排序,再按照顺序对考生逐个进行投档;对某考生投档时,遵循该考生填报的多个平行志愿院校依次检索判断,当检索到该考生填报的某个院校有调档缺额时,即将该考生档案投放到该院校。
实行平行志愿的批次和科类:本科面向贫困地区专项计划批、第一批本科、第二批本科、高本贯通批、专科批的文史和理工两个科类。
平行志愿投档模式的考生成绩排序规则是:
1)先按考生特征总分从高到低排序;
2)考生总分相同时,再按单科成绩依次从高到低排序。
单科成绩排序的科目顺序是:
文史类:①语文;②数学;③文科综合
理工类:①数学;②语文;③理科综合
3)上年被录取后未报到考生将排在同分数的最后,考生总分相同时,按单科成绩依次从高到低排序。
非平行志愿投档模式:根据“志愿优先”的投档原则,先投第一志愿,当院校第一志愿生源不足时,再依次投第二志愿、第三志愿。
2022年天津高考数学试卷及答案相关文章:
★2022年高考数学答题技巧
★2022全国各省市高考使用全国几卷
★2022全国高考试卷分几类
★2022年北京高考数学试卷
★2022高考数学卷分数分布一览
★2022年高考数学必考知识点总结最新
★高三数学教学2021工作总结模板
★2022年高考时间及考试科目安排表公布
★2022年天津高考一分一段预览表
★2022天津高考一分一段重磅揭晓
2022新高考全国卷的数学题是什么难度?有多少基础分?
随着高考的结束,很多考生都在抱怨本次高考中的数学考试难度非常之大,而很多考生说这次考试想拿数学满分是不可能的事情。而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。
一、2022年新高考全国卷的数学题处于中上等难度
根据相关媒体报道,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。二、基础分大概在30~50分
一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。三、总结
总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感觉很难,通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。
2022年浙江高考数学试卷
为了帮助大家全面了解2022年浙江高考数学卷,这样,大家就能知道2022年浙江高考数学难不难?有哪些题型?考了哪些知识点?以及数学试卷的解题思路和方法有哪些?下面是我给大家带来的2022年浙江高考数学试卷及答案,以供大家参考!
2022年浙江高考数学试卷
截止目前,2022年浙江高考数学试卷还未出炉,待高考结束后,力力会第一时间更新2022年浙江高考数学试卷,供大家对照、估分、模拟使用。
2022年浙江高考数学答案解析
截止目前,2022年浙江高考数学答案解析还未出炉,待高考结束后,力力会第一时间更新2022年浙江高考数学答案解析,供大家对照、估分、模拟使用。
高考填报志愿的技巧
各批次志愿填报注意落差
“平行志愿”不是“平等志愿”,也不是“平行录取”。考生填报的平行志愿有自然顺序,并不是只要成绩达到所填报的4个平行志愿院校录取条件,就可能会被4所院校同时录取。实际上,只要考生档案投到一所志愿高校后,就不会到其他高校,对每个考生而言投档录取机会只有一次。
注重学校录取平均分
考生在填报志愿时,首先要了解自己在学校、区所处的位次,这个是最关键的参考因素。可根据自己一模、二模的成绩,看看自己在区、学校的排名,并排一排自己在全市的位次所在。咨询老师往年该名次段考生的去向,掌握自己可能被录取的学校范围,然后再根据个人的兴趣爱好以及家庭背景等因素,在这个范围内做选择。
避免被调剂慎写“不服从调剂”
选学校退一步,选专业进一步高考填报志愿中,究竟是选学校,还是选专业,是考生和家长最难把握的问题。尤其是对各批次的中分段、低分段考生来说,这一难题最为显现。选好的学校,有可能要舍弃好专业:想填个自己喜欢的专业,学校上就得有所顾忌,因为好学校的好专业肯定是要“挤破头”的。
高考先填志愿还是先出分数
现在都是先高考完知道分数之后再填志愿。高考考生填志愿时所报考的学校层次要根据考生所在省份的分数线决定,所以现在一般都是先出成绩再填相关志愿。
在查到高考分数之后,就可以提前预估自己分数可以报的学校和专业,现在是填报的平行志愿,考生可以一次性填报多所高校,多个专业,按照惯例,填报志愿一般是在出分后,在这之前,考生们要确定好自己的意向学校和专业,认真考虑,不要盲目或者瞎填报。
填报高考志愿时,一定要看清本省志愿及录取方式,是平行志愿还是顺序志愿。现在大部分地区都采取平行志愿模式录取,但是也有部分地区或者部分录取批次专仍然采取顺序志愿录取,二者录取原理是不同的,所以在报考时填写的院校专业顺序也要区别对待。
2022年浙江高考数学试卷相关文章:
★2022年高考数学必考知识点总结最新
★2022高考数学选择题答题方法
★高考数学选择题解题方法2022
★2022高考数学必考知识点考点总结大全
★2022年高考数学考前冲刺指导
★2022年河北高考时间表及注意事项
★2022年数学高考知识点
★2022高考数学必考知识点归纳最新
★2022年北京高考数学试卷
★2022年高考数学前十天如何复习最有效
2022新高考全国一卷数学试卷及答案解析
为了帮助大家全面了解2022年新高考全国一卷数学卷,以下是我整理的2022新高考全国一卷数学试卷及答案解析参考,欢迎大家借鉴与参考!
2022新高考全国一卷数学试卷
2022新高考全国一卷数学试卷答案解析参考
高考怎样填志愿
1、选择哪个学校
填报的几个志愿中要注意梯度,尤其是分数正好卡线的同学。不要一味追求名校,将所有志愿都选择同一层次的学校,更忌全部志愿扎堆名校。
2、选择什么专业
选择专业最主要的是结合自己的兴趣和基础,或者毕业后想从事的工作有特殊要求的专业,比如想当医生,就要选择相对应的专业。
3、提前了解各个学校的情况
在填报志愿之前,提前将各个学校的简章和招生计划等一系列的情况了解清楚,看自己的情况是否与该校复合,这样才能更好的去填写志愿。
服从调剂意味着什么
1、增加了一次录取机会
在平行志愿投档录取模式下,实行“排位优先,一轮投档”,每个考生只有一次被投档的机会。
如果考生所填报的专业志愿都未能被录取,选择服从专业调剂则可能被调至院校专业组内还没有录取满额的专业。而如果考生不服从专业调剂,那么一旦被退档,只能等待补录,或参加高职自招。
2、服从调剂,不一定会被调剂到其他专业
从录取的稳妥性上来说,服从专业调剂对于考生是利大于弊的。并不是说选择了专业调剂,就不会被所填报的专业录取,直接被调剂到其他专业。
如果考生的分数足够进入所填报专业时,就会被录取到所填报专业,服从专业调剂就没有派上用场。只有当考生所报专业全都录取额满,才会进入调剂程序。
3、专业调剂会调到哪里去?
专业服从调剂,是指在所填报的院校专业组内进行调剂。一般情况下,专业服从的范围是,考生当年填报的招生院校专业组,在本次招生计划录取中未满额的专业。
高考之后可以去哪玩
1、云南
云南是一个温和的城市,也是许多人向往的地方。可以在丽江感受古城魅力、在大理感受风花雪月、在香格里拉体验传说中的女儿国,一个四季如春的地方很适合放松心情。
云南香格里拉,感受真正的大自然。香格里拉的自然景色是雪山、冰川、峡谷、森林、草甸、湖泊、美丽、明朗、安然、闲逸、悠远、知足、宁静、和谐,是人们美好理想的归宿。在7月到8月间,避开如涌的人群,把自己放逐在自然,听风的呼唤,听鸟的鸣叫,听流水的声音,聆听自己的心声,这是真正的香格里拉。
2、杭州
“上有天堂,下有苏杭”,杭州是我国宜居城市之一,到西湖边上走一走,品尝东坡肉、干炸响铃、西湖醋鱼
3、重庆
说到重庆就会想到“山城”,说起来重庆也是一个神奇的城市,你以为你在以为你在地面,其实你在地下。到重庆看穿越房屋的轻轨、看斑斓的城市,还能吃上麻辣辣的火锅。
4、厦门
厦门是一个小资城市,尤其是鼓浪屿,充满文艺气息,也适合情侣度假。而且因为靠海,厦门还有非常多便宜又好吃的海鲜
5、西藏
西藏是一个神圣又神秘的地方,如果有机会,人生中一定要去一次。到布达拉宫、纳木错体验纯净的心灵,到珠穆朗玛峰挑战高峰,即使是高原反应也是值得留念的体验。
6、九寨沟
九寨沟以绝天下的原始、神秘而闻名。自然景色兼有湖泊、瀑布、雪山、森林之美,有“童话世界”的美誉。这时雪峰玉立,青山流水,交相辉映。这时的瀑布、溪流更是迷人,如飞珠撒玉,异常雄伟秀丽。其中有千年古木,奇花异草,四时变化,色彩纷呈,倒影斑斓,气象万千,是夏季消暑的理想之地。
7、桂林
“桂林山水甲天下”夸的就是桂林的漓江山水。漓江两岸风景如画,当你泛着竹排漫游漓江时,肯定会感觉自己置身于360的泼墨山水中,好山好水目不暇接。另外,桂林的阳朔可是一个魅力十足的旅游热点。在阳朔上至七八十的老人,下至七八岁的小孩都或多或少能说上几句流利的英语,要不是周围的建筑风格提醒你这是中国境内,没准你还以为自己魂游到哪个“鬼”地方了呢。西街的氛围有点像北京的三里屯,那里的酒吧融合了中西两种文化的精华,在西街呆着就算不喝酒只喝茶,也能体会什么叫享受。
2022新高考全国一卷数学试卷及答案解析相关文章:
★2022高考北京卷数学真题及答案解析
★2022高考全国乙卷试题及答案
★2022全国甲卷高考数学文科试卷及答案解析
★2022高考甲卷数学真题试卷及答案
★2022年北京高考数学试卷
★2022高考全国甲卷数学试题及答案
★2022全国新高考I卷语文试题及答案
★2022全国新高考Ⅰ卷英语试题及答案解析
★2022年全国新高考II卷数学真题及答案
★2022北京卷高考文科数学试题及答案解析
谁有09年福建省理科高考数学卷的选择题及答案。
2023高考数学答案一般会在考后一周内公布。
一般情况下,高考答案一般会在考后一周内公布。高考结束后,非官方机构会及时公布各科目的高考答案,但不一定准确。而准确的官方高考答案要晚几天才会公布。
数学试卷做题技巧:
1、审题要慢、做题要快
审题非常关键,不管是简单题还是难题,都需要对题目要求有非常透彻的了解。并且,因为前三道大题是中低档的题目,所以应该尽快的准确完成,以拿出更多的时间来给后面的难题。因为只有前面有了保障,攻克后面高档题的时候才会有更多的信心,也才会更加放得开。
2、灵活处理、有所取舍
数学题需要一步一步的进行推导,在某一个环节当中出现意外很正常,在这个时候,不能死钻牛角尖,而是要灵活处理。比如,可以先从中间的问题做起,进一步开拓思路;将上一个问题的结论作为下一个问题的条件。
2023全国各省市高考考试用卷:
1、高考全国甲卷:(3+文科综合/理科综合)
使用省份:云南、四川、广西、贵州、西藏。
高考试卷科目:语文、数学、外语、文综、理综。
2、高考全国乙卷:(3+文科综合/理科综合)
使用省份:山西、安徽、吉林、黑龙江、内蒙古、陕西、甘肃、青海、宁夏、新疆、江西、河南。
高考试卷科目:语文、数学、外语、文综、理综。
3、新高考全国Ⅰ卷:(3+1+2/3+3)
使用省份:山东、广东、湖南、湖北、河北、江苏、福建、浙江。
高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理、信息技术等。
4、新高考全国Ⅱ卷:(3+1+2/3+3)
使用省份:辽宁、重庆、海南。
高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。
5、自主命题卷:(3+3)
使用省份:天津、上海、北京。
高考试卷科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。
以上数据出自于高三网。
2022年天津高考数学试卷及答案
2009年普通高等学校招生全国统一考试(福建卷)
数学(理工农医类)
一. 选择题:本小题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 函数 最小值是
A.-1 B. C. D.1
1.答案:B
[解析]∵ ∴ .故选B
2.已知全集U=R,集合 ,则 等于
A. { x ∣0 x 2} B { x ∣0<x<2}
C. { x ∣x<0或x>2} D { x ∣x 0或x 2}
2.答案:A
[解析]∵计算可得 或 ∴ .故选A
3.等差数列 的前n项和为 ,且 =6, =4, 则公差d等于
A.1 B C.- 2 D 3
3.答案:C
[解析]∵ 且 .故选C
4. 等于
A. B. 2 C. -2 D. +2
4.答案:D
[解析]∵ .故选D
5.下列函数 中,满足“对任意 , (0, ),当 < 时,都有 >
的是
A. = B. = C . = D
5.答案:A
[解析]依题意可得函数应在 上单调递减,故由选项可得A正确。
6.阅读右图所示的程序框图,运行相应的程序,输出的结果是w.w.w.k.s.5.u.c.o.m
A.2 B .4 C. 8 D .16
6.答案:C
[解析]由算法程序图可知,在n =4前均执行”否”命令,故n=2×4=8. 故选C
7.设m,n是平面 内的两条不同直线, , 是平面 内的两条相交直线,则 // 的一个充分而不必要条件是w.w.w.k.s.5.u.c.o.m
A.m // 且l // B. m // l 且n // l
C. m // 且n // D. m // 且n // l
7.答案:B
[解析]若 ,则可得 .若 则存在
8.已知某运动员每次投篮命中的概率都为40%。现采用随机模拟的方法估计该运动
员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,
指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。经随机模拟产生了20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为
A.0.35 B 0.25 C 0.20 D 0.15
8.答案:B
[解析]由随机数可估算出每次投篮命中的概率 则三次投篮命中两次为 0.25故选B
9.设a,b,c为同一平面内具有相同起点的任意三个非零向量,且满足a与b不共线,
a c ∣a∣=∣c∣,则∣b ? c∣的值一定等于w.w.w.k.s.5.u.c.o.m
A. 以a,b为两边的三角形面积 B 以b,c为两边的三角形面积
C.以a,b为邻边的平行四边形的面积 D 以b,c为邻边的平行四边形的面积
9.答案:C
[解析]依题意可得 故选C.
10.函数 的图象关于直线 对称。据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程 的解集都不可能是
A. B C D
10. 答案:D
[解析]本题用特例法解决简洁快速,对方程 中 分别赋值求出 代入 求出检验即得.
第二卷 (非选择题共100分)
二、填空题:本大题共5小题,每小题4分,共20分。把答案填在答题卡的相应位置。
11.若 (i为虚数单位, )则 _________ w.w.w.k.s.5.u.c.o.m
11. 答案:2
解析:由 ,所以 故 。
12.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示。记分员在去掉一个最高分和一个最低分后,算的平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清。若记分员计算无误,则数字 应该是___________
12. 答案:1
解析:观察茎叶图,
可知有 。
13.过抛物线 的焦点F作倾斜角为 的直线交抛物线于A、B两点,若线段AB的长为8,则 ________________ w.w.w.k.s.5.u.c.o.m
13. 答案:2
解析:由题意可知过焦点的直线方程为 ,联立有 ,又 。
14.若曲线 存在垂直于 轴的切线,则实数 取值范围是_____________.
14. 答案:
解析:由题意可知 ,又因为存在垂直于 轴的切线,
所以 。
15.五位同学围成一圈依序循环报数,规定:
①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;
②若报出的数为3的倍数,则报该数的同学需拍手一次
已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为________.
15. 答案:5
解析:由题意可设第 次报数,第 次报数,第 次报数分别为 , , ,所以有 ,又 由此可得在报到第100个数时,甲同学拍手5次。
三解答题w.w.w.k.s.5.u.c.o.m
16.(13分)
从集合 的所有非空子集中,等可能地取出一个。
(1) 记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;
(2) 记所取出的非空子集的元素个数为 ,求 的分布列和数学期望E
16、解:(1)记”所取出的非空子集满足性质r”为事件A
基本事件总数n= =31
事件A包含的基本事件是{1,4,5}、{2,3,5}、{1,2,3,4}
事件A包含的基本事件数m=3
所以
(II)依题意, 的所有可能取值为1,2,3,4,5
又 , ,
,
故 的分布列为:
1 2 3 4 5
P
从而E +2 +3 +4 +5
17(13分)
如图,四边形ABCD是边长为1的正方形, ,
,且MD=NB=1,E为BC的中点
(1) 求异面直线NE与AM所成角的余弦值
(2) 在线段AN上是否存在点S,使得ES 平面AMN?若存在,求线段AS的长;若不存在,请说明理由w.w.w.k.s.5.u.c.o.m
17.解析:(1)在如图,以D为坐标原点,建立空间直角坐标
依题意,得 。
,
所以异面直线 与 所成角的余弦值为 .A
(2)假设在线段 上存在点 ,使得 平面 .
,
可设
又 .
由 平面 ,得 即
故 ,此时 .
经检验,当 时, 平面 .
故线段 上存在点 ,使得 平面 ,此时 .
18、(本小题满分13分)
如图,某市拟在长为8km的道路OP的一侧修建一条运动
赛道,赛道的前一部分为曲线段OSM,该曲线段为函数
y=Asin x(A>0, >0) x [0,4]的图象,且图象的最高点为
S(3,2 );赛道的后一部分为折线段MNP,为保证参赛
运动员的安全,限定 MNP=120
(I)求A , 的值和M,P两点间的距离;
(II)应如何设计,才能使折线段赛道MNP最长? w.w.w.k.s.5.u.c.o.m
18.本小题主要考查三角函数的图象与性质、解三角形等基础知识,考查运算求解能力以及应用数学知识分析和解决实际问题的能力,考查化归与转化思想、数形结合思想,
解法一
(Ⅰ)依题意,有 , ,又 , 。
当 是,
又
(Ⅱ)在△MNP中∠MNP=120°,MP=5,
设∠PMN= ,则0°< <60°
由正弦定理得
,
故
0°< <60°, 当 =30°时,折线段赛道MNP最长
亦即,将∠PMN设计为30°时,折线段道MNP最长
解法二:
(Ⅰ)同解法一
(Ⅱ)在△MNP中,∠MNP=120°,MP=5,
由余弦定理得 ∠MNP=
即
故
从而 ,即
当且仅当 时,折线段道MNP最长
注:本题第(Ⅱ)问答案及其呈现方式均不唯一,除了解法一、解法二给出的两种设计方式,还可以设计为:① ;② ;③点N在线段MP的垂直平分线上等
19、(本小题满分13分)
已知A,B 分别为曲线C: + =1(y 0,a>0)与x轴
的左、右两个交点,直线 过点B,且与 轴垂直,S为 上
异于点B的一点,连结AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧 的三等分点,试求出点S的坐标;
(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在 ,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。w.w.w.k.s.5.u.c.o.m
19.解析
解法一:
(Ⅰ)当曲线C为半圆时, 如图,由点T为圆弧 的三等分点得∠BOT=60°或120°.
(1)当∠BOT=60°时, ∠SAE=30°.
又AB=2,故在△SAE中,有
(2)当∠BOT=120°时,同理可求得点S的坐标为 ,综上,
(Ⅱ)假设存在 ,使得O,M,S三点共线.
由于点M在以SB为直线的圆上,故 .
显然,直线AS的斜率k存在且k>0,可设直线AS的方程为 .
由
设点
故 ,从而 .
亦即
由 得
由 ,可得 即
经检验,当 时,O,M,S三点共线. 故存在 ,使得O,M,S三点共线.
解法二:
(Ⅰ)同解法一.
(Ⅱ)假设存在a,使得O,M,S三点共线.
由于点M在以SO为直径的圆上,故 .
显然,直线AS的斜率k存在且K>0,可设直线AS的方程为
由
设点 ,则有
故
由 所直线SM的方程为
O,S,M三点共线当且仅当O在直线SM上,即 .
故存在 ,使得O,M,S三点共线.
20、(本小题满分14分)
已知函数 ,且 w.w.w.k.s.5.u.c.o.m
(1) 试用含 的代数式表示b,并求 的单调区间;
(2)令 ,设函数 在 处取得极值,记点M ( , ),N( , ),P( ), ,请仔细观察曲线 在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(I)若对任意的m ( , x ),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(II)若存在点Q(n ,f(n)), x n< m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程)w.w.w.k.s.5.u.c.o.m
20.解法一:
(Ⅰ)依题意,得
由 .
从而
令
①当a>1时,
当x变化时, 与 的变化情况如下表:
x
+ - +
单调递增 单调递减 单调递增
由此得,函数 的单调增区间为 和 ,单调减区间为 。
②当 时, 此时有 恒成立,且仅在 处 ,故函数 的单调增区间为R
③当 时, 同理可得,函数 的单调增区间为 和 ,单调减区间为
综上:
当 时,函数 的单调增区间为 和 ,单调减区间为 ;
当 时,函数 的单调增区间为R;
当 时,函数 的单调增区间为 和 ,单调减区间为 .
(Ⅱ)由 得 令 得
由(1)得 增区间为 和 ,单调减区间为 ,所以函数 在处 取得极值,故M( )N( )。
观察 的图象,有如下现象:
①当m从-1(不含-1)变化到3时,线段MP的斜率与曲线 在点P处切线的斜率 之差Kmp- 的值由正连续变为负。
②线段MP与曲线是否有异于H,P的公共点与Kmp- 的m正负有着密切的关联;
③Kmp- =0对应的位置可能是临界点,故推测:满足Kmp- 的m就是所求的t最小值,下面给出证明并确定的t最小值.曲线 在点 处的切线斜率 ;
线段MP的斜率Kmp
当Kmp- =0时,解得
直线MP的方程为
令
当 时, 在 上只有一个零点 ,可判断 函数在 上单调递增,在 上单调递减,又 ,所以 在 上没有零点,即线段MP与曲线 没有异于M,P的公共点。
当 时, .
所以存在 使得
即当 MP与曲线 有异于M,P的公共点
综上,t的最小值为2.
(2)类似(1)于中的观察,可得m的取值范围为
解法二:
(1)同解法一.
(2)由 得 ,令 ,得
由(1)得的 单调增区间为 和 ,单调减区间为 ,所以函数在处取得极值。故M( ).N( )
(Ⅰ) 直线MP的方程为
由
得
线段MP与曲线 有异于M,P的公共点等价于上述方程在(-1,m)上有根,即函数
上有零点.
因为函数 为三次函数,所以 至多有三个零点,两个极值点.
又 .因此, 在 上有零点等价于 在 内恰有一个极大值点和一个极小值点,即 内有两不相等的实数根.
等价于 即
又因为 ,所以m 的取值范围为(2,3)
从而满足题设条件的r的最小值为2.
21、本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中,
(1)(本小题满分7分)选修4-4:矩阵与变换w.w.w.k.s.5.u.c.o.m
已知矩阵M 所对应的线性变换把点A(x,y)变成点A ‘(13,5),试求M的逆矩阵及点A的坐标
(2)(本小题满分7分)选修4-4:坐标系与参数方程
已知直线l:3x+4y-12=0与圆C: ( 为参数 )试判断他们的公共点个数
(3)(本小题满分7分)选修4-5:不等式选讲
解不等式∣2x-1∣<∣x∣+1
21.
(1)解:依题意得
由 得 ,故
从而由 得
故 为所求.
(2)解:圆的方程可化为 .
其圆心为 ,半径为2.
(3)解:当x<0时,原不等式可化为
又 不存在;
当 时,原不等式可化为
又
当
综上,原不等式的解集为
2005江西高考数学题及答案
为了帮助大家全面了解2022年天津高考数学卷,大家就能知道2022年天津高考数学难不难?有哪些题型?考了哪些知识点?以及数学试卷的解题思路和 方法 有哪些?下面是我给大家带来的2022年天津高考数学试卷及答案(完整版),以供大家参考!
2022年天津高考数学试卷
截止目前,2022年天津高考数学试卷还未出炉,待高考结束后,力力会第一时间更新2022年天津高考数学试卷,供大家对照、估分、模拟使用。
2022年天津高考数学答案解析
截止目前,2022年天津高考数学答案解析还未出炉,待高考结束后,力力会第一时间更新2022年天津高考数学答案解析,供大家对照、估分、模拟使用。
高考录取规则及志愿设置
志愿设置
提前艺术、体育本科设置1个第一院校志愿和1个第二院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;
提前一批本科和提前二批本科批次分别设置1个第一院校志愿、1个第二院校志愿和1个第三院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
本科面向贫困地区专项计划第一、二批次分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;
免费医学定向生、农科生院校设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。
第一批本科(A、A1、B类)批次分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;
第一批本科特殊类型招生分公示类(面向贫困地区高校专项计划、高水平艺术团、高水平运动队)和非公示类(定向、民族班、民族预科班)各设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。
第一批本科(A、B类)艺术本科院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科(A、B、C)类批次设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科(A、B、C类)艺术、体育类院校(第二批本科C类美术类、体育类除外)分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科C类艺术(美术类)、体育类院校分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
第二批本科特殊类型招生(高水平运动队、定向、民族班、民族预科班)各设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。
高本贯通批次设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
高本贯通艺术类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。
提前专科(高职)批次设置1个第一院校志愿、1个第二院校志愿和1个第三院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
专科(高职)批次设置9个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H、I,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。
专科(高职)批次艺术、体育类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。
录取原则
高校招生实行两种投档模式。
(1)平行志愿投档模式:根据“考生之间,分数优先;考生志愿,遵循顺序”的投档原则,先分科类将考生按成绩从高分到低分排序,再按照顺序对考生逐个进行投档;对某考生投档时,遵循该考生填报的多个平行志愿院校依次检索判断,当检索到该考生填报的某个院校有调档缺额时,即将该考生档案投放到该院校。
实行平行志愿的批次和科类:本科面向贫困地区专项计划批、第一批本科(A、A1、B类)(不含特殊类型招生)、第二批本科(A、B、C类)、高本贯通批、专科(高职)批的文史和理工两个科类。
平行志愿投档模式的考生成绩排序规则是:
1)先按考生特征总分从高到低排序(考生特征总分是指考生 文化 课考试成绩和政策性照顾加分之和);
2)考生总分相同时,再按单科成绩依次从高到低排序。
单科成绩排序的科目顺序是:
文史类:①语文;②数学;③文科综合
理工类:①数学;②语文;③理科综合
3)上年被录取后未报到考生将排在同分数的最后,考生总分相同时,按单科成绩依次从高到低排序。
(2)非平行志愿投档模式:根据“志愿优先”的投档原则,先投第一志愿,当院校第一志愿生源不足时,再依次投第二志愿、第三志愿。
2022年天津高考数学试卷及答案相关 文章 :
★ 2022年高考数学答题技巧(最全)
★ 2022全国各省市高考使用全国几卷
★ 2022全国高考试卷分几类
★ 2022年北京高考数学试卷
★ 2022高考数学卷分数分布一览
★ 2022年高考数学必考知识点总结最新
★ 高三数学教学2021工作总结模板
★ 2022年高考时间及考试科目安排表公布
★ 2022年天津高考一分一段预览表
★ 2022天津高考一分一段重磅揭晓
求2008年江苏高考数学试卷(带答案的)
2005年江西高考数学试卷(理科)
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合 则
(A) (B) (C) (D)
2.设复数 若 为实数,则
(A) (B) (C) (D)
3.“ ”是“直线 与圆 相切”的
(A)充分不必要条件 (B)必要不充分条件
(C)充分必要条件 (D)既不充分又不必要条件
4. 的展开式中,含 的正整数次幂的项共有
(A)4项 (B)3项 (C)2项 (D)1项
5.设函数 ,则 为
(A)周期函数,最小正周期为 (B)周期函数,最小正周期为
(C)周期函数,最小正周期为 (D)非周期函数
6.已知向量 ,若 ,则 与 的夹角为
(A) (B) (C) (D)
7.已知函数 的图象如右图所示
(其中 是函数 的导函数).下
面四个图象中 的图象大致是
8.若 ,则
(A) (B) (C) (D)
9.矩形ABCD中, ,沿AC将矩形ABCD折成一个直二面角 ,则四面体ABCD的外接球的体积为
(A) (B) (C) (D)
10.已知实数 满足等式 ,下列五个关系式
① ② ③ ④ ⑤
其中不可能成立的关系式有
(A)1个 (B)2个 (C)3个 (D)4个
11.在 中,O为坐标原点, ,则当 的面积达到最大值时,
(A) (B) (C) (D)
12.将 这 个数平均分成三组,则每组的三个数都成等差数列的概率为
(A) (B) (C) (D)
二.填空题:本大题共的小题,每小题4分,共16分.请把答案填在答题卡上.
13.若函数 是奇函数,则
14.设实数 满足 ,则 的最大值是_____
15.如图,在直三棱柱 中,
分别为 的中点,沿棱柱的表面从
E到F两点的最短路径的长度为______
16.以下四个关于圆锥曲线的命题中
①设A、B为两个定点, 为非零常数,若 ,则点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若 ,则动点P的轨迹为椭圆;
③方程 的两根可分别作为椭圆和双曲线的离心率;
④双曲线 与椭圆 有相同的焦点.
其中真命题的序号为________(写出所有真命题的序号).
三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
已知函数 为常数),且方程 有两个实根为
(1)求函数 的解析式;
(2)设 ,解关于 的不等式:
18.(本小题满分12分)
已知向量 ,令
是否存在实数 ,使 (其中 是 的导函数)?若存在,则求
出 的值;若不存在,则证明之.
19.(本小题满分12分)
A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢
得B一张卡片,否则B赢得A一张卡片.规定掷硬币的次数达到9次时,或在此前某人已赢
得所有卡片时游戏终止.设 表示游戏终止时掷硬币的次数.
(1)求 的取值范围;
(2)求 的数学期望
20.(本小题满分12分)
如图,在长方体 中, ,点E在棱AB上移动.
(1)证明: ;
(2)当EAB的中点时,求点E到面 的距离;
(3)AE等于何值时,二面角 的大小为 .
21.(本小题满分12分)
已知数列 的各项都是正数,且满足:
(1)证明
(2)求数列 的通项公式
22.(本小题满分14分)
如图,设抛物线 的焦点为F,动点P
在直线 上运动,过P作抛物线
C的两条切线PA、PB,且与抛物线C分别相切
于A、B两点
(1)求 的重心G的轨迹方程;
(2)证明
2005年普通高等学校招生全国统一考试(江西卷)
理科数学参考答案
一、选择题
1.D 2.A 3.A 4.B 5.B 6.C 7.C 8.C 9.C 10.B 11.D 12.A
二、填空题
13. 14. 15. 16.③④
三、解答题
17.解:(1)将 得
(2)不等式即为
即
①当
②当
③ .
18.解:
19.解:(1)设正面出现的次数为m,反面出现的次数为n,则 ,可得:
(2)
20.解法(一)
(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E
(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1= ,AD1= ,
故
(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,
∴∠DHD1为二面角D1—EC—D的平面角.
设AE=x,则BE=2-x
解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)
(1)
(2)因为E为AB的中点,则E(1,1,0),从而 ,
,设平面ACD1的法向量为 ,则
也即 ,得 ,从而 ,所以点E到平面AD1C的距离为
(3)设平面D1EC的法向量 ,∴
由 令b=1, ∴c=2,a=2-x,
∴
依题意
∴ (不合,舍去), .
∴AE= 时,二面角D1—EC—D的大小为 .
21.解:(1)方法一 用数学归纳法证明:
1°当n=1时,
∴ ,命题正确.
2°假设n=k时有
则
而
又
∴ 时命题正确.
由1°、2°知,对一切n∈N时有
方法二:用数学归纳法证明:
1°当n=1时, ∴ ;
2°假设n=k时有 成立,
令 , 在[0,2]上单调递增,所以由假设
有: 即
也即当n=k+1时 成立,所以对一切
(2)下面来求数列的通项: 所以
,
又bn=-1,所以
22.解:(1)设切点A、B坐标分别为 ,
∴切线AP的方程为:
切线BP的方程为:
解得P点的坐标为:
所以△APB的重心G的坐标为 ,
所以 ,由点P在直线l上运动,从而得到重心G的轨迹方程为:
(2)方法1:因为
由于P点在抛物线外,则
∴
同理有
∴∠AFP=∠PFB.
方法2:①当 所以P点坐标为 ,则P点到直线AF的距离为:
即
所以P点到直线BF的距离为:
所以d1=d2,即得∠AFP=∠PFB.
②当 时,直线AF的方程:
直线BF的方程:
所以P点到直线AF的距离为:
,同理可得到P点到直线BF的距离 ,因此由d1=d2,可得到∠AFP=∠PFB.
绝密★启用前
2008年普通高等学校招生全国统一考试(江苏卷)
数 学
本试卷分第I卷(填空题)和第II卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的
准考证号、姓名,并将条形码粘贴在指定位置上.
2.选择题答案使用2B
铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择
题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.
4.保持卡面清洁,不折叠,不破损.
5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.
参考公式:
样本数据 , , , 的标准差
其中 为样本平均数
柱体体积公式
其中 为底面积, 为高
一、填空题:本大题共1小题,每小题5分,共70分.
1. 的最小正周期为 ,其中 ,则 = ▲ .
本小题考查三角函数的周期公式.
10
2.一个骰子连续投2 次,点数和为4 的概率 ▲ .
本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故
3. 表示为 ,则 = ▲ .
本小题考查复数的除法运算.∵ ,∴ =0, =1,因此
1
4.A= ,则A Z 的元素的个数 ▲ .
本小题考查集合的运算和解一元二次不等式.由 得 ,∵Δ<0,∴集合A 为 ,因此A Z 的元素不存在.
0
5. , 的夹角为 , , 则 ▲ .
本小题考查向量的线性运算.
= , 7
7
6.在平面直角坐标系 中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲ .
本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.
7.算法与统计的题目
8.直线 是曲线 的一条切线,则实数b= ▲ .
本小题考查导数的几何意义、切线的求法. ,令 得 ,故切点(2,ln2),代入直线方程,得,所以b=ln2-1.
ln2-1
9在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P(0,p)在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE的方程: ,请你求OF的方程:
( ▲ ) .
本小题考查直线方程的求法.画草图,由对称性可猜想填 .事实上,由截距式可得直线AB: ,直线CP: ,两式相减得 ,显然直线AB与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.
10.将全体正整数排成一个三角形数阵:
1
2 3
4 5 6
7 8 9 10
. . . . . . .
按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 ▲ .
本小题考查归纳推理和等差数列求和公式.前n-1 行共有正整数1+2+…+(n-1)个,即 个,因此第n 行第3 个数是全体正整数中第 +3个,即为 .
11.已知 , ,则 的最小值 ▲ .
本小题考查二元基本不等式的运用.由 得 ,代入 得
,当且仅当 =3 时取“=”.
3
12.在平面直角坐标系中,椭圆 1( 0)的焦距为2,以O为圆心, 为半径的圆,过点 作圆的两切线互相垂直,则离心率 = ▲ .
设切线PA、PB 互相垂直,又半径OA 垂直于PA,所以△OAP 是等腰直角三角形,故 ,解得 .
13.若AB=2, AC= BC ,则 的最大值 ▲ . ?
本小题考查三角形面积公式、余弦定理以及函数思想.设BC= ,则AC= ,
根据面积公式得 = ,根据余弦定理得
,代入上式得
=
由三角形三边关系有 解得 ,
故当 时取得 最大值
14. 对于 总有 ≥0 成立,则 = ▲ .
本小题考查函数单调性的综合运用.若x=0,则不论 取何值, ≥0显然成立;当x>0 即 时, ≥0可化为,
设 ,则 , 所以 在区间 上单调递增,在区间 上单调递减,因此 ,从而 ≥4;
当x<0 即 时, ≥0可化为 ,
在区间 上单调递增,因此 ,从而 ≤4,综上 =4
4
二、解答题:解答应写出文字说明,证明过程或演算步骤.
15.如图,在平面直角坐标系 中,以 轴为始边做两个锐角 , ,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为 .
(Ⅰ)求tan( )的值;
(Ⅱ)求 的值.
本小题考查三角函数的定义、两角和的正切、二倍角的正切公式.
由条件的 ,因为 , 为锐角,所以 =
因此
(Ⅰ)tan( )=
(Ⅱ) ,所以
∵ 为锐角,∴ ,∴ =
16.在四面体ABCD 中,CB= CD, AD⊥BD,且E ,F分别是AB,BD 的中点,
求证:(Ⅰ)直线EF ‖面ACD ;
(Ⅱ)面EFC⊥面BCD .
本小题考查空间直线与平面、平面与平面的位置关系的判定.
(Ⅰ)∵ E,F 分别是AB,BD 的中点,
∴EF 是△ABD 的中位线,∴EF‖AD,
∵EF 面ACD ,AD 面ACD ,∴直线EF‖面ACD .
(Ⅱ)∵ AD⊥BD ,EF‖AD,∴ EF⊥BD.
∵CB=CD, F 是BD的中点,∴CF⊥BD.
又EF CF=F,∴BD⊥面EFC.∵BD 面BCD,∴面EFC⊥面BCD .
17.某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD的中点P 处,已知AB=20km,
CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为 km.
(Ⅰ)按下列要求写出函数关系式:
①设∠BAO= (rad),将 表示成 的函数关系式;
②设OP (km) ,将 表示成x 的函数关系式.
(Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.
本小题主要考查函数最值的应用.
(Ⅰ)①由条件知PQ 垂直平分AB,若∠BAO= (rad) ,则 , 故
,又OP= 10-10ta ,
所以 ,
所求函数关系式为
②若OP= (km) ,则OQ=10- ,所以OA =OB=
所求函数关系式为
(Ⅱ)选择函数模型①,
令 0 得sin ,因为 ,所以 = ,
当 时, , 是 的减函数;当 时, , 是 的增函数,所以当 = 时, 。这时点P 位于线段AB 的中垂线上,且距离AB 边
km处。
18.设平面直角坐标系 中,设二次函数 的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(Ⅰ)求实数b 的取值范围;
(Ⅱ)求圆C 的方程;
(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.
本小题主要考查二次函数图象与性质、圆的方程的求法.
(Ⅰ)令 =0,得抛物线与 轴交点是(0,b);
令 ,由题意b≠0 且Δ>0,解得b<1 且b≠0.
(Ⅱ)设所求圆的一般方程为
令 =0 得 这与 =0 是同一个方程,故D=2,F= .
令 =0 得 =0,此方程有一个根为b,代入得出E=―b―1.
所以圆C 的方程为 .
(Ⅲ)圆C 必过定点(0,1)和(-2,1).
证明如下:将(0,1)代入圆C 的方程,得左边=0 +1 +2×0-(b+1)+b=0,右边=0,
所以圆C 必过定点(0,1).
同理可证圆C 必过定点(-2,1).
19.(Ⅰ)设 是各项均不为零的等差数列( ),且公差 ,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:
①当n =4时,求 的数值;②求 的所有可能值;
(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列 ,其中任意三项(按原来顺序)都不能组成等比数列.
本小题主要考查等差数列与等比数列的综合运用.
(Ⅰ)①当n=4 时, 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d=0.
若删去 ,则有 即
化简得 =0,因为 ≠0,所以 =4 ;
若删去 ,则有 ,即 ,故得 =1.
综上 =1或-4.
②当n=5 时, 中同样不可能删去首项或末项.
若删去 ,则有 = ,即 .故得 =6 ;
若删去 ,则 = ,即 .
化简得3 =0,因为d≠0,所以也不能删去 ;
若删去 ,则有 = ,即 .故得 = 2 .
当n≥6 时,不存在这样的等差数列.事实上,在数列 , , ,…, , , 中,
由于不能删去首项或末项,若删去 ,则必有 = ,这与d≠0 矛盾;同样若删
去 也有 = ,这与d≠0 矛盾;若删去 ,…, 中任意一个,则必有
= ,这与d≠0 矛盾.
综上所述,n∈.
(Ⅱ)略
20.若 , , 为常数,
且
(Ⅰ)求 对所有实数成立的充要条件(用 表示);
(Ⅱ)设 为两实数, 且 ,若
求证: 在区间 上的单调增区间的长度和为 (闭区间 的长度定义为 ).
本小题考查充要条件、指数函数与绝对值函数、不等式的综合运用.
(Ⅰ) 恒成立
(*)
因为
所以,故只需 (*)恒成立
综上所述, 对所有实数成立的充要条件是:
(Ⅱ)1°如果 ,则的图象关于直线 对称.因为 ,所以区间 关于直线 对称.
因为减区间为 ,增区间为 ,所以单调增区间的长度和为
2°如果 .
(1)当 时. ,
当 , 因为 ,所以 ,
故 =
当 , 因为 ,所以
故 =
因为 ,所以 ,所以 即
当 时,令 ,则 ,所以 ,
当 时, ,所以 =
时, ,所以 =
在区间 上的单调增区间的长度和
=
(2)当 时. ,
当 , 因为 ,所以 ,
故 =
当 , 因为 ,所以
故 =
因为 ,所以 ,所以
当 时,令 ,则 ,所以 ,
当 时, ,所以 =
时, ,所以 =
在区间 上的单调增区间的长度和
=
综上得 在区间 上的单调增区间的长度和为