您现在的位置是: 首页 > 教育资讯 教育资讯

2020北京高考文科数学_北京数学高考文科试卷

tamoadmin 2024-06-10 人已围观

简介1.数学新高考一卷试题及答案20222.北京高考还分文理科吗3.高考数学最后一题究竟有多难?4.高考都有什么卷5.2022年高考数学卷真题及答案解析(全国新高考1卷)2023高考文理科数学卷子不一样。2023年高中毕业考试文理科数学考试试卷明显不同的。针对2023年,有部分省份已经进入了新高中毕业考试的阶段,既然如此那,就是高中毕业考试考试试卷差不多的。但针对陕西,安徽等省份,还是采取的是文理分科

1.数学新高考一卷试题及答案2022

2.北京高考还分文理科吗

3.高考数学最后一题究竟有多难?

4.高考都有什么卷

5.2022年高考数学卷真题及答案解析(全国新高考1卷)

2020北京高考文科数学_北京数学高考文科试卷

2023高考文理科数学卷子不一样。

2023年高中毕业考试文理科数学考试试卷明显不同的。

针对2023年,有部分省份已经进入了新高中毕业考试的阶段,既然如此那,就是高中毕业考试考试试卷差不多的。但针对陕西,安徽等省份,还是采取的是文理分科。

从2023年起,自主出题的省市减少到北京、天津、上海、浙江四地。且浙江也已经明确,根据新高中毕业考试改革要求,自2023年起,语数英三门科目均使用全国卷。

在高中毕业考试新方案中,文理不分科已成各地高中毕业考试改革趋势,高中毕业考试科目“3+3”也成很多省份未来高中毕业考试的新模式。

“3+3”模式是指,报考普通本科院校的学员,其高中毕业考试成绩将由语文、数学、外语3门统一高中毕业考试成绩和学员选考的3门普通高中学业水平考试等级性考试科目成绩构成。

学生不可以再分文理科,可以自主选择选考科目。就3门选考科目来说,各地多采取“6选3”模式,即从思想政治、历史、地理、物理、化学、生物6个科目中自主选择3科作为考试科目。值得注意的是,浙江采用的是“7选3”模式,除了以上所提到的6科,还多了“技术(含通用技术和信息技术)”这项科目。

有关信息:

在分值设置上,大部分省份明确统一高中毕业考试的语文、数学、外语每科满分150分,学生自选3门科目每门满分100分,满分合计750分。

不过,上海、西藏带来一定不一样,明确3门选考科目每门70分,高中毕业考试成绩满分满分660分,除开这点江苏高中毕业考试科目分值暂时还没有最后确定,但明确比现行的480分要高。海南要求以每个科目原始分转换后的标准分呈现学员成绩,这是现在仅仅只有采取标准分这一计分方式的省份。

数学新高考一卷试题及答案2022

北京市海淀区高三年级第二学期期末练习

数学(文科)

注意事项:

1.答卷前将学校、班级、姓名填写清楚。

2.第i卷每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。第ii卷各小题用钢笔或圆珠笔将答案直接写在试题卷上。

一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.

1. 若集合 ,则b∪( )等于 ( )

a.{5} b.{1,2,5} |?~Y0`QHa')2d~V: [ 本 资 料 来 源 于 贵 州 学 习 网 高考频道试题宝库 ] |?~Y0`QHa')2d~V:

c.{1,2,3,4,5} d.

2.等差数列{ }的公差d<0,且 ,则数列{ }的通项公式是 ( )

a. b.

c. d.

3.若函数 +1的反函数是 ,则函数 的图象大致是 ( )

a. b. c. d.

4.双曲线 的焦距是10,则实数m的值为 ( )

a.-16 b.4 c.16 d.81

5.若α、β是两个不同平面,m、n是两条不同直线,则下列命题不正确的是 ( )

a. 则

b.m‖n,m⊥α,则n⊥α

c.n‖α,n⊥β,则α⊥β

d.α∩β=m,n与α、β所成的角相等,则m⊥n

6.若 ,则下列不等式中一定成立的是 ( )

a. b.

c. d.

7.某科技小组有四名男生两名女生. 现从中选出三名同学参加比赛,其中至少有一名女生

入选的不同选法种数为 ( )

a. b. c. d.

8.若 ,则“ ”是“ ”的

( )

a.充要条件 b.充分不必要条件

c.必要不充分条件 d.既不充分又不必要条件

二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上.

9.不等式 的解集为 .

10.将圆 按向量 =(1,-2)平移后,得到圆c′,则圆c′的半径为 ,其圆心坐标为 .

11.在同一时间内,对同一地域,市、区两个气象台预报天气准确的概率分别为 、 ,

两个气象台预报准确的概率互不影响,则在同一时间内,至少有一气象台预报准确的概率是 .

12.如图,边长均为2的正方形abcd与正方形abef构成60°的二面角d—ab—f,则点d到点f的距离为 ,点d到平面abef的距离为 .

13.若函数 的定义域为r,

则 的值为 .

14.对大于或等于2的自然数m的n次幂进行如下方式的“分裂”

仿此,52的“分裂”中最大的数是 ,若 的“分裂”中最小的数是21,则m的值为 .

三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤.

15.(本小题共13分)

已知函数

(1)求函数 的最小正周期和最大值;

(2)函数 的图象可由 )的图象经过怎样的平移和伸缩变换得

到?

16.(本小题共13分)

已知函数 、 ),函数 的图象在点(2, )处的切线与x轴平行.

(1)用关于m的代数式表示n;

(2)当m=1时,求函数 的单调区间.

17.(本小题共14分)

如图:三棱锥p—abc中,pb⊥底面abc,∠bac=90°,pb=ab=ac=4,点e是pa的中点.

(1)求证:ac⊥平面pab;

(2)求异面直线be与ac的距离;

(3)求直线pa与平面pbc所成的角的大小.

18.(本小题共13分)

平面直角坐标系中,o为坐标原点,已知两定点a(1,0)、b(0,-1),动点p( )满足: .

(1)求点p的轨迹方程;

(2)设点p的轨迹与双曲线 交于相异两点m、n. 若以

mn为直径的圆经过原点,且双曲线c的离心率等于 ,求双曲线c的方程.

19.(本小题共13分)

数列 的前n项和为 对任意的 都成立,其中m为常数,且m<-1.

(1)求证:数列 是等比数列;

(2)记数列 的公比为q,设 若数列 满足;

). 求证:数列 是等差数列;

(3)在(2)的条件下,设 ,数列 的前n项和为 . 求证:

20.(本小题共14分)

函数 的定义域为r,并满足以下条件:

①对任意 ,有 ;

②对任意 、 ,有 ;

(1)求 的值;

(2)求证: 在r上是单调增函数;

(3)若 ,求证:

北京市海淀区高三年级第二学期期末练习

数学(文科)答案

一、选择题(本大题共8小题,每题5分,共40分)

1.b 2.d 3.a 4.c 5.d 6.a 7.c 8.b

二、填空题(本大题共6小题,每小题5分,共30分)

9. 10. (2分) (0,0)(3分) 11.0.98

12.2(2分) (3分) 13.-6 14.9(2分) 5(3分)

三、解答题(本大题共6小题,共80分)

15.(共13分)解:(1) …………2分

)………………………………4分

∴t= …………………………………………………………6分

(2)先将 )的图象向左移 个单位,得到 的图象;再将 的图象的横坐标变为原来的一半,纵坐标不变,得到 的图象.…………………………13分

或先将 )的图象的横坐标变为原来一半,纵坐标不变,得到函数

的图象;再将 的图象向左移 个单位,得到 的图象.………………………………13分

16.(共13分)解:(1) ………………2分

由已知条件得: ∴3m+n=0 ………………4分 ∴n=-3m…………6分

(2)若m=1,则n=-3……………………7分

,令 ………………8分

或 ………………10分 令 ………12分

∴ 的单调递增区间为(-∞,0),(2,+∞)

∴ 的单调递减区间为(0,2).………………………………13分

17.(共14分)

解法一:(1)∵三棱锥p—abc中,pb⊥底面abc,∠bac=90°

∴pb⊥ac,ba⊥ac……………………4分

∵pb∩ba=b ∴ac⊥平面pab………………4分

(2)∵pb=ba=4,点e是pa的中点

∴be⊥ea………………5分 又∵ea 平面pab

由(1)知ac⊥ea………………6分

∴ea是异面直线be、ac的公垂线段…………7分

∵pb⊥ab ∴△pba为直角三角形…………8分

∴ea= pa= ×4 =2 ∴异面直线be与ac的距离为2 .………………9分

(3)取bc中点d,连结ad、pd ∵ab=ac=4,∠bac=90°

∴bc⊥ad ad=2 ∵pb⊥底面abc,ad 底面abc

∴pb⊥ad ∵pb∩bc =b ∴ad⊥平面pbc………………11分

∴pd为pa在平面pbc内的射影 ∴∠apd为pa与平面pbc所成角.…………………12分

在rt△adp中, ……………………13分

∴∠apd=30° ………………14分 ∴pa与平面pbc所成角大小为30°.

解法二:(1)同解法一…………………………4分

(2)同解法一……………………………9分

(3)过点a作ad//pb,则ad⊥平面abc

如图,以a为坐标原点,建立空间直角坐标系,

则a(0,0,0),b(-4,0,0),c(0,4,0),

p(-4,0,4)………………10分

………………11分

设平面pbc的法向量

……………………12分

=(1,-1,0) =(4,0,-4),设直线pa与平面pbc所成角为

sin =cos< , > …………………………13分

∴直线pa与平面pbc所成角的大小为30° ………………14分

18.(共13分)解:(1) …………2分

即点p的轨迹方程为 …………4分

(2)由 得: =0

∵点p轨迹与双曲线c交于相异两点m、n ,

设 ,则 …………6分

∵以mn为直径的圆经过原点 即:

即 ①…………………8分

②………………10分

∴由①、②解得 符合(*)式

∴双曲线c的方程为 ………………………………13分

19.(共13分)证明:(1)当n=1时, …………………………1分

① ②……………2分

①-②得: ……………………3分

…………………………4分

∴数列 是首项为1,公比数 的等比数列.……………………4分

(2) …………7分

……………………9分

∴数列{ }是首项为1,公差为1的等差数列.

(3)由(2)得 n 则 ……10分 ……11分

………………12分

…………………………13分

20.(共14分)解法一:(1)令 ,得: ……………1分

…………………………3分

(2)任取 、 ,且 . 设 则

……………………4分

在r上是单调增函数……10分

(3)由(1)(2)知

………11分

而 ……14分

解法二:(1)∵对任意x、y∈r,有

………1分 ∴当 时 ……2分

∵任意x∈r, …………3分 ……………………4分

(2) …………………………6分

是r上单调增函数 即 是r上单调增函数;………10分

(3) ……………………11分

……………………14分

说明:其它正确解法按相应步骤给分.

北京高考还分文理科吗

十年寒窗标记的生活刻度难以磨灭,伏案苦读也没法用一句“俱往矣”概括。下面是我为大家整理的2022年数学新高考一卷试题及答案,仅供参考,喜欢可以 收藏 分享一下哟!

数学新高考一卷试卷2022

2022数学新高考一卷答案

高中生的 学习 方法 与技巧

转变认识

高中阶段学习的内容较多,知识范畴扩大,要求也提高了许多。对于许多高中生,经常这科上去了,那科又下来了,某次考试有科不及格也是常有的事。所以,转变认识,

首先,要对此有客观的认识,要认识到问题的普遍性和不可避免性。既然是正常的就不要着急烦躁,但一定要用积极的思想研究问题,要用积极的态度面对问题,要用积极的行动解决问题。

其次,要在改进学习方法上下功夫。影响学习效果的原因是多方面的,除了客观原因外,学生是否从自身实际出发选用学习方法等都直接影响着学生的学习效果。有的同学也想改进方法,但总是感到时间不够,不舍得将宝贵的时间用在学习和改进学习方法上。而统统将时间投入到具体科目的学习上,殊不知这正是犯了一个极大的错误。这里介绍的良性循环学习法对高三年级的同学是一种简便易行立竿见影的 复习方法 。

再次,在掌握了适合自己的一套学习方法的同时,还要有一套可行的复习计划。剩下的时间毕竟是有限的,在这样的形势下,只有从战略的高度来制订计划多上求学网,处理问题才能决胜于千里之外,才能取得事半功倍的效果。

明确战略

明确战略就是从全局的角度来制订复习计划。从全部考试科目来看问题,而不是就一科论一科地看问题。战略高度就是每次考试结束后试卷发下来时,将各科存在的问题放在一起分成三类,对每一类问题制订出不同的策略。分类方法是:

第一类问题是会的却做错了的题。分明会做,反而做错了的;心知肚明是很有把握的题,却没做对;还有明明会又非常简单的题,却是落笔就错;确实会,答案就在嘴边盘旋,却在考场上怎么也回忆不起来了。有时一走出考场立即就想起来了;有时试卷发下来一看,都不太相信是自己答的,当时在考场上怎么会做成这个样子等等。这类问题是低级错误。出现这类问题是考试后最后悔的事情。所以一定要经常在求学网上练习。

第二类问题是模棱两可似是而非的问题。就是第一遍做对了,一改反而改错了,或第一遍做错了,后来又改对了,或回答不严密不完整的等等。这类问题是记忆的不准确,理解的不够透彻,应用的不够自如的问题。

第三类问题是不会的题。由于不会,因而答错了或蒙的。这是没记住不理解,更谈不上应用。

策略安排是:消灭第一类问题;攻克第二类问题;暂放第三类问题。有些同学对待三类问题的策略与此不同,方法有别,有人重点攻第三类问题;轻视第二类问题;忽略第一类问题。这套方案对于个别同学可能有效果,但对于绝大多数同学收效甚微,经常是事倍功半,不可取。还有一些同学是按科目找问题来解决问题。按科目找问题没错,重要的是将各科的问题集中到一起分类。就差这一步,效果就相去甚远。将问题分好类后,首先要消灭第一类问题。

数学新高考一卷试题及答案2022相关 文章 :

★ 2022新高考全国I卷数学卷试题及答案解析

★ 2022全国新高考Ⅰ卷文科数学试题及答案解析

★ 2022年新高考Ⅰ卷数学真题试卷及答案

★ 2022年全国一卷高考真题试卷试题

★ 2022年全国新高考1卷数学高考真题

★ 2022年北京高考数学试卷

★ 2022全国甲卷高考数学文科试卷及答案解析

★ 2022年全国新高考Ⅰ卷英语试题及答案最新

★ 2022高考北京卷数学真题及答案解析

★ 2022年高考数学全国乙卷(理科)试题答案(预测)

高考数学最后一题究竟有多难?

北京高考不分文理科。

北京高考是自主命题卷。北京属于高考自主命题地区,试卷难度属于优惠模式。北京新高考实行“3+3”模式,第一个3:北京高考科目为语文、数学、外语3门,不分文理。每科满分150分,总分450分。第二个3:政治、历史、地理、物理、化学、生物6门设合格性和等级性考试。高中学生选择学习其中3门科目并参加相应的等级性考试。

北京新高考不再区分文理科,选考科目实行等级赋分制。考生的总成绩将改由语文、数学、外语3门统一高考成绩和考生选考的3门普通高中学业水平考试等级性考试科目成绩构成,学生等级性考试成绩纳入高考成绩采用等级赋分。

高考注意事项

掌握时间心不慌,掌握考试时间,迟到15分钟不得进场,一般要提早20分钟,充分利用开考前的五分钟,认真倾听监考老师宣读有关规则和注意事项,以免事后惹麻烦。

接过考卷,先认真填写姓名、学校、准考证号、座号等,只须检查一下有没有漏页、白页即可,无须把题目从头到底地详细看一遍,只须看清解题的要求,试卷页数,大致了解一下试题份量、难度等。

考好第一科

进入考场,调整一下姿势,舒适地坐在位子上;摆好文具,戴眼镜的把眼镜摘下擦一擦,尽快进入角色;此时心中想着的只是考试的注意事项,不要再多虑考试的结果,成败、得失。

第一科的考试很重要,但开考前不宜过早地在教室外等待考试,可以在操场等场所有意识地放松。做到镇定、自如,不慌张。如果出现心律轻快,手脚发抖等紧张现象,也属正常现象,可以适当进行调节,如深呼吸,同时告诫自己别紧张,不害怕。

高考都有什么卷

如果问我数学最后一题有多难,我要能答上我就是省状元。

虽然我说的是玩笑话,但并不是没有道理的。每年的高考,都会有两个拉开距离的重要环节。语文的作文拉开普通段子手和灵魂段子手的距离。数学的最后一道大题拉开普通生和尖子生的距离。

到底有多难?来让我们看一眼。

有过高考经历的都知道,要在高考数学的最后一题得分,不难;满分,巨难。因为老师说过,只要你能做条辅助线或者写一个相关的公式就给你分。倒是想要精益求精拿个满分,大概只有天才才能做到吧。毕竟通常来说最后一题就是压轴题了,是专家们“故意”用来区分你和天才的。

让我们回顾历史最难数学压轴题。史上最难高考试卷—1984理科数学。那一年,全国平均分26分;那一年,北京平均分17分;那一年,安徽平均分28分。为84年的考生鞠一个躬,同志们你们辛苦了。

让我们重温这份经典试卷,全国得分率21.7%的“史上最难”。

是不是看了之后,90后非常感谢父母把我们生在90年代,让我们高考在10年代。其实,我们也不用幸灾乐祸。10年代的压轴题也类似老太太的裹脚布——又臭又长。

这是一次写没有三角形的三角函数大题的体验。这也是一次写立体几何的时候居然不认识字的感受。更是一次写要用线性规划的分布列的题的憋屈。看到用椭圆规求椭圆方程的题,我想掀桌,大吼一声:出题老师,我永远忘不了你,我感谢你八辈祖宗。想哭!想哭!想哭!

怎么应对数学压轴题

在高考数学中。最后一题,光是长度都令人生畏。但是你要知道高考是知识与心理的双重测验。会做一道题;会做一道难题;明知是难题,在高度集中一个小时后,还能顶住压力做出来。这完全是三种不同的境界,做到第一种境界,你就不平凡啦!达到第二种境界,恭喜你你已经可以升仙啦!完成第三种境界,膜拜你,你就是考神。

像我们这样的学渣,在最后一道数学题面前,除了留下一个“解”字,也别无他法。但是我们只要做到能发挥好自己的应有的水平就行。毕竟能正常发挥就已经很不容易了。

不过我还是在这里,祝各位考生都是超常发挥!考上自己心仪的大学!

2022年高考数学卷真题及答案解析(全国新高考1卷)

高考包括文科和理科两个卷别,每个卷别包括语文、数学、外语和三门文科或理科选考科目,共7门科目。以下是具体介绍:

一、文科卷别:

1.语文、数学、外语为必考科目;

2.文科选考科目包括历史、地理、政治和生物、化学、物理两组科目,每组中必须选考其中一门。

二、理科卷别:

1.语文、数学、外语为必考科目;

2.理科选考科目包括历史、地理、政治和地理、化学、物理两组科目,每组中必须选考其中一门。

需要注意的是,每个省份实际的考试科目可能略有不同,应以当地教育部门发布的招生考试政策为准。同时,在备考过程中,考生应当根据自身情况和志愿选择考试科目,并结合考试大纲制定科学的备考计划,以达到最佳的考试效果。

除了以上介绍的科目外,高考还有一些特殊的考试科目,例如美术、音乐、体育等,这些科目通常只会在某些专业或学校的招生计划中出现,属于选考科目。此外,高考还有综合素质评价部分,包括学科竞赛、社会实践、文体活动等内容,综合评价学生的全面素质。

高考卷别和科目设置是根据国家课程标准和对未来人才的需求而定的,旨在评价学生的知识综合能力和基本素质。在备考过程中,要注重掌握基本概念和原理,深入理解各个科目的相关知识点,掌握解题技巧和方法,同时注重实践和综合能力的培养,以取得最好的成绩。

高考是中国教育制度中非常重要的一环,其分数成绩直接关系到学生能否升入高等教育阶段。在备考过程中,除了掌握各科目相关知识点和考试技巧外,还需要注重身心健康的维护,保持良好的心态,减轻备考压力。

同时,选择适合自己的复习方法也非常重要。有些学生适合通过刷题来提高自己的知识水平,而有些学生则更适合通过深入思考和探究来提升自己的能力。此外,参加一些科普类、竞赛类或志愿者服务等活动,也可以充实自己的经验和能力,对于综合素质评价部分也有很好的帮助。

总之,在备考过程中,要注重坚持和规律性,建立有效的学习计划和复习方法,同时注重身心健康,心态平衡,做好应对考试的准备,以取得最佳成绩。

2022年高考数学依据数学课程标准命题,深化基础考查,突出主干知识,创新试题设计。下面是我为大家收集的关于2022年高考数学卷真题及答案解析(全国新高考1卷)。希望可以帮助大家。

高考数学卷真题

高考数学卷真题答案解析

高考数学知识点整理

一、直线方程.

1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.

注:①当或时,直线垂直于轴,它的斜率不存在.

②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.

2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.

特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.

注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.

附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.

3. ⑴两条直线平行:

‖两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.

(一般的结论是:对于两条直线,它们在轴上的纵截距是,则‖,且或的斜率均不存在,即是平行的必要不充分条件,且)

推论:如果两条直线的倾斜角为则‖.

⑵两条直线垂直:

两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要条件)

4. 直线的交角:

⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.

⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.

5. 过两直线的交点的直线系方程为参数,不包括在内)

6. 点到直线的距离:

⑴点到直线的距离公式:设点,直线到的距离为,则有.

注:

1. 两点P1(x1,y1)、P2(x2,y2)的距离公式:.

特例:点P(x,y)到原点O的距离:

2. 定比分点坐标分式。若点P(x,y)分有向线段,其中P1(x1,y1),P2(x2,y2).则

特例,中点坐标公式;重要结论,三角形重心坐标公式。

3. 直线的倾斜角(0°≤<180°)、斜率:

4. 过两点.

当(即直线和x轴垂直)时,直线的倾斜角=,没有斜率

⑵两条平行线间的距离公式:设两条平行直线,它们之间的距离为,则有.

注;直线系方程

1. 与直线:Ax+By+C= 0平行的直线系方程是:Ax+By+m=0.( m?R, C≠m).

2. 与直线:Ax+By+C= 0垂直的直线系方程是:Bx-Ay+m=0.( m?R)

3. 过定点(x1,y1)的直线系方程是: A(x-x1)+B(y-y1)=0 (A,B不全为0)

4. 过直线l1、l2交点的直线系方程:(A1x+B1y+C1)+λ( A2x+B2y+C2)=0 (λ?R) 注:该直线系不含l2.

7. 关于点对称和关于某直线对称:

⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.

⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.

若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.

⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.

注:①曲线、直线关于一直线()对称的解法:y换x,x换y. 例:曲线f(x ,y)=0关于直线y=x–2对称曲线方程是f(y+2 ,x –2)=0.

②曲线C: f(x ,y)=0关于点(a ,b)的对称曲线方程是f(a – x, 2b – y)=0.

2022年高考数学卷真题及答案解析(全国新高考1卷)相关 文章 :

★ 2022全国甲卷高考数学文科试卷及答案解析

★ 2022年新高考Ⅱ卷数学真题试卷及答案

★ 2022高考全国甲卷数学试题及答案

★ 2022北京卷高考文科数学试题及答案解析

★ 2021年高考全国甲卷数学理科答案

★ 2022全国乙卷理科数学真题及答案解析

★ 2021新高考全国1卷数学真题及答案

★ 2022年全国乙卷高考理科数学题目与答案解析

★ 2022年全国乙卷高考数学(理科)试卷

★ 2022江西高考文科数学试题及答案

文章标签: # 直线 # 高考 # 数学