您现在的位置是: 首页 > 教育政策 教育政策

高考数学思想方法,高考数学思想方法导引pdf

tamoadmin 2024-06-23 人已围观

简介1.中学数学中几种常用的数学思想方法2.高中全部数学思想方法3.高中数学思想方法有哪几种4.高中数学学习技巧。5.常见的数学思想方法6.高考数学大题的解题技巧及解题思想高考试题主要从以下几个方面对数学思想方法进行考查:①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;③数学思维方法:观察与分析、概括与抽象、分析与综合

1.中学数学中几种常用的数学思想方法

2.高中全部数学思想方法

3.高中数学思想方法有哪几种

4.高中数学学习技巧。

5.常见的数学思想方法

6.高考数学大题的解题技巧及解题思想

高考数学思想方法,高考数学思想方法导引pdf

高考试题主要从以下几个方面对数学思想方法进行考查:

① 常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;

② 数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;

③ 数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;

④ 常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。

数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。

数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。

可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。

为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。

在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

中学数学中几种常用的数学思想方法

数学四大思想:函数与方程、转化与化归、分类讨论、数形结合;

函数与方程

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。

笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。

函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。

函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。

等价转化

等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。 转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。

著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。

等价转化思想方法的特点是具有灵活性和多样性。在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。

在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。

分类讨论

在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。

引起分类讨论的原因主要是以下几个方面:

① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。

② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。

③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。

另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。

进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。

解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。

数形结合

中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

高中全部数学思想方法

山西省朔州市平鲁区李林中学 刘娟娟数学是研究现实世界中数量关系和空间形成的一门科学。随着科学技术的不断发展,数学也从原始形态的数量关系向抽象化的数量关系发展。在发展的过程中,不仅建立了严密的理论体系,而且形成了一整套的数学思想方法。本文结合有关的例题,对数学中常用的几种思想方法作一番探讨。一、数形结合的思想方法数形结合思想方法就是把抽象的数学符号语言和直观的几何图形联系起来,把抽象思维与形象思维相结合,通过“以形助数” 、“以数解形” ,使抽象问题具体化,复杂问题简单化,从而达到解答目的。数形结合应用甚广,不仅在解选择题、填空题中显示它的优越性,而且在解某些抽象数学问题时也起到事半功倍的效果。“以数解形” 是解析几何的主线,“以形助数” 是数形结合的研究重点。如何“以数转形”是数形结合的关键,图解法是数形结合的具体体现。数形结合是近年中、高考重点考查的思想方法之一。下面我们结合下面的例子作简单的分析:例1. 已知 0

高中数学思想方法有哪几种

高中数学思想:

(1)转化与化归:这个思想几乎在所有数学题中都会用到,具体地说就是将未知的东西转化为

已知的,这样一步一步的转化就可以将复杂问题转化为若干个简单的小问题

, 进而解决问题。

(2)函数、方程与不等式联想:

这个思想一般不会被人重视,其实无论是方程问题还是不等式问题都可以转化为函数

问题,方程的根与不等式解集的区间端点就是函数的零点。有时在研究或解决方程与不等

式问题时可以转化为函数问题,通过函数图象来解决。

(3)数形结合:

提到数形结合的思想,多数应用在有关函数、导数以及解析几何的题目中,这些题

都是先构造函数(有的题直接给出函数表达式),然后根据函数的解析性质(单调性、奇偶性

以及周期对称性)来解决问题。这种思想大部分人都会想到去用,但是很难用好,这个就

需要做题来训练了。

(4)放缩:

放缩是放大和缩小的简称,放大和缩小大部分会应用在有关不等式的题中(均值定理

选修部分的不等式,还有在导数部分也会经常应用)。放缩这种思想是最难的一种数学思想

,它难在不知道什时候去用,有时即使知道了该用放缩的思想了,但是却不会放大或是

缩小,会放大或缩小也不一定能放缩得恰到好处,放太大了或缩太小了都是徒劳。一般

要想很好的掌握这种数学思想不仅需要大量的练习,有时还需要灵感(也就是运气),但是

好在高考对于这部分并不会重点考察,有时根本就不考相关题目。

(5)其他:其他的数学思想还有很多,但是在高中能用到的也就是我上面所说的...

高中数学学习技巧。

高中数学思想方法有7种,内容如下:

1、函数与方程的思想

函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。

函数和方程、不等式是通过函数值等于零、大于零或小于零而相互关联的,它们之间既有区别又有联系。函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。

2、数形结合的思想

数学研究的对象是数量关系和空间形式,即“数”与“形”两个方面。“数”与“形”两者之间并不是孤立的,而是有着密切的联系。数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中“数”与“形”相互转化的研究策略,即是数形结合的思想。

3、分类与整合的思想

高考将分类与整合的思想放在比较重要的位置,并以解答题为主进行考查,考查时要求考生理解什么样的问题需要分类研究,为什么要分类,如何分类以及分类后如何研究与最后如何整合。

特别注意引起分类的原因,我们必须相当熟悉,有些概念就是分类定义的,如绝对值的概念、整数分为奇数偶数等,有些运算法则和公式是分类给出的,例如等比数列的求和公式就分为q=1和q≠1两种情况,对数函数的单调性就分为a>1,0<a<1,此外,图形位置的相对变化也会引起分类等。<p="">。

4、化归与转化的思想

将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的'数学方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题的思想叫做化归与转化的思想。化归与转化思想的实质是揭示联系,实现转化。

转化有等价转化和非等价转化。等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。

5、特殊与一般的思想

由特殊到一般,由一般到特殊,是人们认识世界的基本方法之一。数学研究也不例外,由特殊到一般,由一般到特殊的研究数学问题的基本认识过程,就是数学研究中的特殊与一般的思想。

6、有限与无限的思想

函数是对运动变化的动态事物的描述,体现了变量数学在研究客观事物中的重要作用。导数是对事物变化快慢的一种描述,并由此可进一步处理和解决函数的增减、极大、极小、最大、最小等实际问题,是研究客观事物变化率和最优化问题的有力工具。

7、或然与必然的思想

随机现象有两个最基本的特征,一是结果的随机性,即重复同样的试验,所得到的结果并不相同,以至于在试验之前不能预料试验的结果;二是频率的稳定性,即在大量重复试验中,每个试验结果发生的频率“稳定”在一个常数附近。

常见的数学思想方法

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:

①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:

设元→换元→解元→还元

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设 ②列 ③解 ④写

复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:

(-----)(----)=0 两种情况为或型

②配成平方型:

(----)2+(----)2=0 两种情况为且型

(1)求值的思路列欲求值字母的方程或方程组

(2)求取值范围的思路列欲求范围字母的不等式或不等式组

基本思路是:把√m化成完全平方式。即:

方法有:

(1)直接代入法

(2)化简代入法

(3)适当变形法(和积代入法)

注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

(1)按照类型求解

(2)根据需要讨论

(3)分类写出结论

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

图像的平移规律是研究复杂函数的重要方法。平移规律是:

讨论函数性质的重要方法是图像法——看图像、得性质。

定义域?图像在X轴上对应的部分

值 域?图像在Y轴上对应的部分

单调性?从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

最 值?图像最高点处有最大值,图像最低点处有最小值

奇偶性?关于Y轴对称是偶函数,关于原点对称是奇函数

方程的根

函数图像与x轴交点横坐标

不等式解集端点

一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:

二次化为正

判别且求根

画出示意图

解集横轴中

一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:

题意

二次函数图像

不等式组

不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:

(1)定义域没有特别限制时---记忆法或结论法;

(2)定义域有特别限制时---图像截断法,一般思路是:

画出图像

截出一断

得出结论

应用题中,涉及“一个变量取什么值时另一个变量取得最大值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:

设变量

列函数

求最值

写结论

穿线法是解高次不等式和分式不等式的最好方法。其一般思路是:

首项化正

求根标根

右上起穿

奇穿偶回

注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。

高考数学大题的解题技巧及解题思想

 在数学的学习过程中,有哪些常见的思想方法呢?下面是我网络整理的常见的数学思想方法以供大家学习。

 常见的数学思想方法:分类与整合

 解题时,我们常常遇到这样一种情况,解到某一步之后,不能再以统一方法,统一的式子继续进行了,因为这时被研究的问题包含了多种情况,这就必须在条件所给出的总区域内,正确划分若干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,还必须把它们总合在一起,因为我们研究的毕竟是这个问题的全体,这就是分类与整合的思想。有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。

 高考将分类与整合的思想放在比较重要的位置,并以解答题为主进行考查,考查时要求考生理解什么样的问题需要分类研究,为什么要分类,如何分类以及分类后如何研究与最后如何整合。特别注意引起分类的原因,我们必须相当熟悉,有些概念就是分类定义的,如绝对值的概念、整数分为奇数偶数等,有些运算法则和公式是分类给出的,例如等比数列的求和公式就分为q=1和q?1两种情况,对数函数的单调性就分为a>1,0

 高考对分类与整合的思想的考查往往集中在含有参数的解析式,包括函数问题,数列问题和解析几何问题等。此外,排列组合的问题,概率统计的问题也考查分类与整合的思想。随着新课程高考在全国的实施,在新增内容中考查分类与整合的思想,窃以为,是今后几年高考命题的重点之一。

常见的数学思想方法:函数与方程

 著名数学家克莱因说?一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考?。一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题。

 函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。

 所谓方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。

 函数和方程、不等式是通过函数值等于零、大于零或小于零而相互关联的,它们之间既有区别又有联系。函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。

 高考把函数与方程的思想作为七种思想方法的重点来考查,使用选择题和填空题考查函数与方程的思想的基本运用,而在解答题中,则从更深的层次,在知识网络的交汇处,从思想方法与相关能力的关系角度进行综合考查。

 在解题时,要学会思考这些问题:(1)是不是需要把字母看作变量?(2)是不是需要把代数式看作函数?如果是函数它具有哪些性质?(3)是不是需要构造一个函数把表面上不是函数的问题化归为函数问题?(4)能否把一个等式转化为一个方程?对这个方程的根有什么要求

  常见的数学思想方法:特殊与一般

 由特殊到一般,由一般到特殊,是人们认识世界的基本方法之一。数学研究也不例外,由特殊到一般,由一般到特殊的研究数学问题的基本认识过程,就是数学研究中的特殊与一般的思想。

 我们对公式、定理、法则的学习往往都是从特殊开始,通过总结归纳得出来的,证明后,又使用它们来解决相关的数学问题。在数学中经常使用的归纳法,演绎法就是特殊与一般的思想的集中体现。分析历年的高考试题,考查特殊与一般的思想的题比比皆是,有的考查利用一般归纳法进行猜想,有的通过构造特殊函数、特殊数列,寻找特殊点,确定特殊位置,利用特殊值、特殊方程等,研究解决一般问题、抽象问题、运动变化的问题等。随着新教材的全面推广,高考以新增内容为素材,突出考查特殊与一般的思想必然成为今后命题改革的方向。

常见的数学思想方法:有限与无限

 有限与无限并不是一新东西,虽然我们开始学习的数学都是有限的教学,但其中也包含有无限的成分,只不过没有进行深入的研究。在学习有关数及其运算的过程中,对自然数、整数、有理数、实数、复数的学习都是有限个数的运算,但实际上各数集内元素的个数都是无限的。在解析几何中,还学习过抛物线的渐近线,已经开始有极限的思想体现在其中。数列的极限和函数的极限集中体现了有限与无限的思想。使用极限的思想解决数学问题,比较明显的是立体几何中求球的体积和表面积,采用无限分割的方法来解决,实际上是先进行有限次分割,然后再求和求极限,这是典型的有限与无限的思想的应用。

 函数是对运动变化的动态事物的描述,体现了变量数学在研究客观事物中的重要作用。导数是对事物变化快慢的一种描述,并由此可进一步处理和解决函数的增减、极大、极小、最大、最小等实际问题,是研究客观事物变化率和最优化问题的有力工具。

 高考中对有限与无限的思想的考查才刚刚起步并且往往是在考查其他数学思想和方法的过程中同时考查有限与无限思想。例如,在使用由特殊到一般的归纳思维时,含有有限与无限的思想;在使用数学归纳法证明时,解决的是无限的问题,体现的是有限与无限的思想,等等。随着对新增内容的考查的逐步深入,必将加强对有限与无限的思想的考查,设计出突出体现出有限与无限的思想的新颖试题。

  常见的数学思想方法:或然与必然

 随机现象有两个最基本的特征,一是结果的随机性,即重复同样的试验,所得到的结果并不相同,以至于在试验之前不能预料试验的结果;二是频率的稳定性,即在大量重复试验中,每个试验结果发生的频率?稳定?在一个常数附近。了解一个随机现象就要知道这个随机现象中所有可能出现的结果,知道每个结果出现的概率,知道这两点就说对这个随机现象研究清楚了。概率研究的是随机现象,研究的过程是在?偶然?中寻找?必然?,然后再用?必然?的规律去解决?偶然?的问题,这其中所体现的数学思想就是或然与必然的思想。

 随着新教材的推广,高考中对概率内容的考查已放在了重要的位置。通过对等可能性事件的概率,互斥事件有一个发生的概率、相互独立事件同时发生的概率、n次独立重复试验恰相好有k次发生的概率、随机事件的分布列与数学期望等重点内容的考查,考查基本概念和基本方法,考查在解决实际应用问题中或然与必然的辩证关系。

 概率问题,无论属于哪一种类型,所研究的都是随机事件中?或然?与?必然?的辩证关系,在?或然?中寻找?必然?的规律。

常见的数学思想方法:化归与转化

 将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题的思想叫做化归与转化的思想。化归与转化思想的实质是揭示联系,实现转化。

 除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。从这个意义上讲,解决数学问题就是从未知向已知转化的过程。化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。数学中的转化比比皆是,如未知向已知转达化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,函数与方程的转化等,都是转化思想的体现。(转化与化归的思想方法是数学中最基本的思想方法。数学中的一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。各种变换方法、分析法、反证法、待定系数法、构造法等都是转化的手段。所以说,转化与化归是数学思想方法的灵魂。)

 转化有等价转化和非等价转化。等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。

 熟练、扎实地掌握基础知识、基本技能和基本方法是骒转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。有人认为?抓基础,重转化?是学好中学数学的金钥匙,说的也不无道理。

常见的数学思想方法:数形结合

 数学研究的对象是数量关系和空间形式,即?数?与?形?两个方面。?数?与?形?两者之间并不是孤立的,而是有着密切的联系。数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中?数?与?形?相互转化的研究策略,即是数形结合的思想。

 数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途径。它的运用,往往展现出?柳暗花明又一村?般的数形和谐完美结合的境地。华罗庚先生曾作过精辟的论述:?数与开形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难人微,数形结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系切莫离。?

 数形结合既是一个重要的数学思想,也是一种常用的解题策略。一方面,许多数量关系的抽象概念和解析式,若赋予几何意义,往往变得非常直观形象;另一方面,一些图形的属性又可通过数量关系的研究,使得图形的性质更丰富、更精准、更深刻。这种?数?与?形?的相互转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可大大开拓我们的解题思路。可以这样说,数形结合不仅是探求思路的?慧眼?,而且是深化思维的有力?杠杆?。

 由?形?到?数?的转化,往往比较明显,而由?数?到?形?的转化却需要转化的意识。因此,数形结合的思想的使用往往偏重于由?数?到?形?的转化。

 在高考中,选择题和填空题这两种题型的特点(只需写出结果而无需写出过程),为考查数形结合的思想提供了方便,能突出考查考生将复杂的数量关系问题转化为直观的几何图形问题来解决的意识。而在解答题中,考虑到推理论证的严谨性,对数量关系问题的研究仍突出代数的方法而不是提倡使用几何的方法,解答题中对数形结合的思想的考查以由?数?到?形?的转化为主。

解题技巧

 一、三角函数题

 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

 二、数列题

 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

 3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

 三、立体几何题

 1.证明线面位置关系,一般不需要去建系,更简单;

 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

 四、概率问题

 1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

 2.搞清是什么概率模型,套用哪个公式;

 3.记准均值、方差、标准差公式;

 4.求概率时,正难则反(根据p1+p2+...+pn=1);

 5.注意计数时利用列举、树图等基本方法;

 6.注意放回抽样,不放回抽样;

 7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

 8.注意条件概率公式;

 9.注意平均分组、不完全平均分组问题。

 五、圆锥曲线问题

 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

 3.战术上整体思路要保7分,争9分,想12分。

 六、导数、极值、最值、不等式恒成立(或逆用求参)问题

 1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

 2.注意最后一问有应用前面结论的意识;

 3.注意分论讨论的思想;

 4.不等式问题有构造函数的意识;

 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

 6.整体思路上保6分,争10分,想14分。

 解题思想

 1.函数与方程思想

 函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。

 2.数形结合思想

 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

 3.特殊与一般的思想

 用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

 4.极限思想解题步骤

 极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

 5.分类讨论思想

 同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数*算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。

文章标签: # 思想 # 问题 # 数学