您现在的位置是: 首页 > 教育政策 教育政策

高考模拟真题及答案_高考模拟试题精编答案

tamoadmin 2024-05-16 人已围观

简介1.黄冈市2011年高三模拟考试数学文答案成考快速报名和免费咨询:https://www.87dh.com/xl/ 本文小编带来2021年江苏成人高考专升本《语文》练习题及答案(6),更多2021成人高考模拟试题、成人高考历年真题等信息,请及时关注猎考网。  阅读题:1、阅读下面一段话,然后回答问题:臣闻地广者粟多,国大者人众,兵强则士勇。是以泰山不让土壤,故能成其大;

1.黄冈市2011年高三模拟考试数学文答案

高考模拟真题及答案_高考模拟试题精编答案

成考快速报名和免费咨询:https://www.87dh.com/xl/ 本文小编带来2021年江苏成人高考专升本《语文》练习题及答案(6),更多2021成人高考模拟试题、成人高考历年真题等信息,请及时关注猎考网。  阅读题:

1、阅读下面一段话,然后回答问题:

臣闻地广者粟多,国大者人众,兵强则士勇。是以泰山不让土壤,故能成其大;河海不择细流,故能就其深;王者不却众庶,故能明其德。是以地无四方,民无民国,四时充美,鬼神降福,此五帝三五之所以无敌也。今乃弃黔首以资敌国,却宾客以业诸侯,使天下之士退而不敢西向,裹足不入秦,此所谓“藉寇兵而贵盗粮”者也。

问:(1)给这段文字划分层次,并概括每层的大意。

(2)请找出这段文字的中心句。

(3)这段文字运用了哪两种论证方法?

(4)这段文字运用了哪两种修辞方法?

答:(1)到“此五帝三五之所以无敌也”为第一层,后面是第二层。前面写纳客之利,后面写逐客之害。前后形成对比。

(2)前一层的中心名是“王者不却众庶,故能明其德”;后一句的中心句是“此所谓藉寇兵而贵盗粮也”。

(3)类比法和对比法。

(4)比喻、排比、对偶。

2、阅读下面一段话,然后回答问题:

伏惟圣明以孝治天下,凡在故老,犹蒙矜育,况臣孤苦,特为尤甚。且臣少仕伪朝,历职郞署,本图官达,不矜名节。今臣亡国贱俘,至徽至陋,过蒙拔擢,宠命优渥,岂敢盘桓,有所希冀?但以刘日薄西山,气息奄奄,人命危浅,朝不虑夕。臣无祖母,无以至今日,祖母无臣,无以终余年。母孙二人,更相为命,是以区区不能废远。

问:(1)给这段文字划分层次,并归纳每层的大意。

(2)文中的“圣朝”、“伪朝”分别指哪一个具体朝代?

(3)作者特意标举“圣朝以孝治天下”,这是运用了什么说理方法?

(4)“但以刘日薄西山,气息奄奄”用了什么修辞手法?

答:(1)第一层至“特为尤甚”,打出“圣朝以孝治天下”的旗号,作为自己不能奉召出仕的最重要的道德依据。第二层至“在所希翼”,表明自己不能奉召出仕,并不是忠于前朝,保全名节,以打消晋武帝的疑虑。第三层,叙述祖孙二人相依为命的情况,表明自己尽孝祖母的心迹。

(2)圣朝指晋朝(西晋),“伪朝”指蜀汉。

(3)以子之矛,攻子之盾。

(4)比喻。

成考有疑问、不知道如何总结成考考点内容、不清楚成考报名当地政策,点击底部咨询官网,免费领取复习资料:https://www.87dh.com/xl/

黄冈市2011年高三模拟考试数学文答案

“三鹿奶粉”事件发生后,党中央、国务院高度重视,做出了重大部署,对婴幼儿奶粉进行了三聚氰胺全国专项监督检查,其结果令人震惊。已知三聚氰胺的结构简式如图所示(抱歉我现在不能传),下列说法正确的是:

A.三聚氰胺的分子式是N6H6

B.三聚氰胺溶液显碱性

C.三聚氰胺中氮的百分含量为80%

D.三聚氰胺为平面结构

答案:B

湖北省黄冈市黄州区一中2011届高三2011年数学模拟试卷二

选择题

1.则( )

A.21004 B.-21004 C.22008 D.-22008

A

解析 。

2.定义集合运算:.设,,则集合 的所有元素之和为( )

A.0 B.2 C.3 D.6

D

3.已知a,b∈R,且a>b,则下列不等式中恒成立的是( )

A.a2>b2 B.() a <()b C.lg(a-b)>0 D.>1

4.已知条件: =,条件:直线与圆相切,则是的

( )条件

A.充分不必要条件 B.必要不充分条件

C.充分必要条件 D.既不充分也不必要条件

A

解析 :直线与圆相切。

5. 已知集合的集合T= ( )

A、 B、 C、 D、

A

解析 ,因为,所以选(A)。

6.设,则等于( )

A. B. C. D.

D

解析 ,选(D)

7.已知圆,点(-2,0)及点(2,),从点观察点,要使视线不被圆挡住,则的取值范围是 ( )

A.(-∞,-1)∪(-1,+∞)

B.(-∞,-2)∪(2,+∞)

C.(-∞,)∪(,+∞)

D.(-∞,-4)∪(4,+∞)

C

解析 如图,,。所以的取值范围是(C)。

8.(文)( )

A. B. C. D.

D

解析 。

(理)从5男4女中选4位代表,其中至少有2位男生,且至少有1位女生,分别到四个不同的工厂调查,不同的分派方法有( )

A. 100种 B. 400种 C. 480种w.w.w.k.s.5 u.c.o.m D.2400种

D

解析 。

9.函数对任意正整数a、b满足条件,且。则

的值是( )

A.2007 B.2008 C.2006 D.2005

B

解析 因为,所以,即,所以

10.已知函数,则对于任意实数、,取值的情况是( )

A.大于0 B.小于0 C. 等于0 D.不确定

A

解析 函数是奇函数,且在R上单调增。不妨设,则,所以,所以,所以。

11.为了大力改善交通,庆祝国庆60周年,某地区准备在国庆60周年来临之际,开通A,

B两地之间的公交线路。已知A,B相距15公里,公交的规划要求如下:相邻两个站点之间的距离相等,经过每一站点的汽车前后间隔时间为3分钟,忽略停车时间,设计汽车的行使速度是60公里每小时,则在A,B两地之间投入运行的汽车至少需要( )辆。

A.9 B.10 C.11 D.12

B

解析 因为每3分钟一班,行使速度是60公里每小时,所以相邻两个站点之间的距离是3公里,所以从A,B单程需要6个站点,即需要6辆汽车,再加上从B到A需要4辆汽车,所以共需要10辆汽车。

12.已知等差数列{a}的前n项和为S,若,,则此数列{a}中绝

对值最小的项是( )

A B C D

C

解析 因为,,所以,所以,所以

,所以此数列{a}中绝对值最小的项是。

填空题

13.执行右边的程序框图,若,则输出的

解析 。

14.(文)利用随机模拟方法计算与围成的面积时,利用计算器产生两组0~1区间的均匀随机数,,然后进行平移与伸缩变换,,试验进行100次,前98次中落在所求面积区域内的样本点数为65,已知最后两次试验的随机数,及,,那么本次模拟得出的面积为

10.72

解析 由,得:,点落在与围成的区域

内,由,得:,点也落在与

围成的区域内,所以本次模拟得出的面积为。

(理)极坐标方程表示的曲线是

一条直线和一个圆

解析 ,

则或。

15.(文)某师傅需用合板制作一个工作台,工作台由主体和附属两部分组成,主体部分全封闭,附属部分是为了防止工件滑出台面而设置的护墙,其大致形状的三视图如右图所示(单位长度: cm), 则按图中尺寸,做成的工作台用去的合板的面积为 (制作过程合板损耗和合板厚度忽略不计)。

解析 由三视图知该工作台是棱长为80的正方体上面围上一块矩形和两块直角三角形合板,如右图示,则用去的合板的面积。

(理)如果1N能拉长弹簧1cm,为了将弹簧拉长6cm,需做功 J。

0.18

解析 ,所以,所以。

16.(文)已知满足:,则函数的取值范围是

解析 ,其中。作出可行域得,即,又因为函数在上单调增,所以,所以。

(理) 设,则的最小值为

8

解析 设,由柯西不等式得:

,当且仅当同向时,等号成立。又,所以,所以的最小值为8。

解答题

17.如图,已知点和单位圆上半部分上的动点.

⑴若,求向量;

⑵求的最大值.

解析⑴依题意,,(不含1个或2个端点也对),

,(写出1个即可),

因为,所以,即,解得,

所以;

⑵,

。当时,取得最大值,。

18.(文)在新中国建立的60年,特别是改革开放30年以来,我国的经济快速增长,人民的生活水平稳步提高。某地2006年到2008年每年的用电量与GDP的资料如下:

日 期 2006年 2007年 2008年

用电量(x亿度) 11 13 12

GDP增长率(y(百分数)) 25 30 26

(1)用表中的数据可以求得,试求出y关于x的线性回归方程;

(2)根据以往的统计资料:当地每年的GDP每增长,就会带动1万就业。由于受金融危机的影响,预计2009年的用电量是8亿度,2009年当地新增就业人口是20万,请你估计这些新增就业人口的就业率。

解析 (1)由数据求得,所以.所以y关于x的线性回归方程为;

(2)当时,,所以预测2009年当地的GDP增长,从而可以带动当地的新增就业人口17万,估计这些新增就业人口的就业率。

(理)某单位有8名员工,其中有5名员工曾经参加过一种或几种技能培训,另外3名员工

没有参加过任何技能培训,现要从8名员工中任选3人参加一种新的技能培训。

(I)求恰好选到1名曾经参加过技能培训的员工的概率;

(II)这次培训结束后,仍然没有参加过任何技能培训的员工人数X是一个随机变量,求X

的分布列和数学期望.

解析(I)恰好选到1名已参加过其他技能培训的员工的概率

(II)随机变量X可能取的值是:0,1,2,3.

∴随机变量X的分布列是

X 0 1 2 3

P

∴X的数学期望。

19.(文)一个多面体的三视图(正前方垂直于平面)及直观图如图所示,M、N分别是A1B、B1C1的中点。

(1)计算多面体的体积;

(2)求证‖平面;

(3)若点是AB的中点,求证AM平面。

解析(1)如右图可知,在这个多面体的直观图中,AA1⊥平面ABC,且AC⊥BC,AC=BC=CC1=,所以;

(2)连,由矩形性质得:AB1与A1B交于点M,在△AB1C1中,由中位线性质得MN//AC1,又因为平面ACC1A1,所以MN‖平面;

(3)在矩形中,,,所以,所以,又因为平面平面,,所以平面,所以,即,又,所以平面,即AM平面。

(理)已知中,,,⊥平面,,、分别是、上的动点,且.

(1)求证不论为何值,总有平面⊥平面;

(2)若平面与平面所成的二面角的大小为,求的值。

解析(1)∵⊥平面,∴,又在中,,∴,又,∴⊥平面,又在中、分别是、上的动点,且,∴,∴⊥平面,又平面,∴不论为何值,总有平面⊥平面;

(2)过点作,∵⊥平面,∴⊥平面,又在中,,∴,如图,以为原点,建立空间直角坐标系.又在中,,,∴。又在中,,∴,则。

∵,∴,∵,∴,

又∵, ,

设是平面的法向量,则,因为,所以,因为=(0,1,0),所以,令得,,因为 是平面的法向量,且平面与平面所成的二面角为,,∴,∴或(不合题意,舍去),故当平面与平面所成的二面角的大小为时。

20.已知函数有极值.

(Ⅰ)求的取值范围;

(Ⅱ)若在处取得极值,且当时,恒成立,求的取值范围.

解析(Ⅰ)∵,∴, 要使有极值,则方程有两个实数解,从而△=,∴.

(Ⅱ)∵在处取得极值,∴,∴.

∴,∵,∴当时,,函数单调递增,当时,,函数单调递减.∴时,在处取得最大值, ∵时,恒成立,

∴,即,∴或,即的取值范围是。

21.已知椭圆,的右焦点为F,上顶点为A,P为C1上任一点,圆心在y轴上的圆C2与斜率为的直线切于点B,且AF‖。

(1)求圆的方程及椭圆的离心率。

(2)过P作圆C2的切线PE,PG,若的最小值为,求椭圆的方程。

解析(1)由圆心在y轴上的圆C2与斜率为1的直线切于点B,所以圆心在过B且垂直于的直线上,又圆心在y轴上,则圆心C2(0,3),

圆心到直线的距离,所以所求圆C2方程为:,又AF‖,,所以有,即,椭圆的离心率为;

(2)设

在中, ,由椭圆的几何性质有:

,所以有,因,所以,

所以椭圆的方程为。

22.(文科)(1)若数列是数列的子数列,试判断与的大小关系;

(2)在数列中,已知是一个公差不为零的等差数列,a5=6。

当且

②若存在自然数

构成一个等比数列。求证:当a3是整数时,a3必为12的正约数。

解析(1);

(2)①因为,从而,

,;

②因为,即

因为必为12的正约数。

(理科)已知数列R)对于。

(Ⅰ)当;

(Ⅱ)若,求数列的通项;

(Ⅲ)证明在数列中,存在一项满足≤3。

解析(I),;

当。因此 。

(II),,。

∴猜想对于任意正整数l有(即是周

期为4的数列)。

下面用数学归纳法证明。

(i)时,成立;

(ii)假设当时,成立。

,,

,。

由(i)(ii)可知对任意。

同理可证 。

(III)假设对所有的n,,所以数列是首项

为a,公差为-3的等差数列,所以,所以存在充分大的

n,使得,这与假设矛盾,∴假设不成立,∴在数列中,存在一项满足≤3。

文章标签: # 所以 # 平面 # 解析