您现在的位置是: 首页 > 教育政策 教育政策
高考模拟真题及答案_高考模拟试题精编答案
tamoadmin 2024-05-16 人已围观
简介1.黄冈市2011年高三模拟考试数学文答案成考快速报名和免费咨询:https://www.87dh.com/xl/ 本文小编带来2021年江苏成人高考专升本《语文》练习题及答案(6),更多2021成人高考模拟试题、成人高考历年真题等信息,请及时关注猎考网。 阅读题:1、阅读下面一段话,然后回答问题:臣闻地广者粟多,国大者人众,兵强则士勇。是以泰山不让土壤,故能成其大;
1.黄冈市2011年高三模拟考试数学文答案
成考快速报名和免费咨询:https://www.87dh.com/xl/ 本文小编带来2021年江苏成人高考专升本《语文》练习题及答案(6),更多2021成人高考模拟试题、成人高考历年真题等信息,请及时关注猎考网。 阅读题:
1、阅读下面一段话,然后回答问题:
臣闻地广者粟多,国大者人众,兵强则士勇。是以泰山不让土壤,故能成其大;河海不择细流,故能就其深;王者不却众庶,故能明其德。是以地无四方,民无民国,四时充美,鬼神降福,此五帝三五之所以无敌也。今乃弃黔首以资敌国,却宾客以业诸侯,使天下之士退而不敢西向,裹足不入秦,此所谓“藉寇兵而贵盗粮”者也。
问:(1)给这段文字划分层次,并概括每层的大意。
(2)请找出这段文字的中心句。
(3)这段文字运用了哪两种论证方法?
(4)这段文字运用了哪两种修辞方法?
答:(1)到“此五帝三五之所以无敌也”为第一层,后面是第二层。前面写纳客之利,后面写逐客之害。前后形成对比。
(2)前一层的中心名是“王者不却众庶,故能明其德”;后一句的中心句是“此所谓藉寇兵而贵盗粮也”。
(3)类比法和对比法。
(4)比喻、排比、对偶。
2、阅读下面一段话,然后回答问题:
伏惟圣明以孝治天下,凡在故老,犹蒙矜育,况臣孤苦,特为尤甚。且臣少仕伪朝,历职郞署,本图官达,不矜名节。今臣亡国贱俘,至徽至陋,过蒙拔擢,宠命优渥,岂敢盘桓,有所希冀?但以刘日薄西山,气息奄奄,人命危浅,朝不虑夕。臣无祖母,无以至今日,祖母无臣,无以终余年。母孙二人,更相为命,是以区区不能废远。
问:(1)给这段文字划分层次,并归纳每层的大意。
(2)文中的“圣朝”、“伪朝”分别指哪一个具体朝代?
(3)作者特意标举“圣朝以孝治天下”,这是运用了什么说理方法?
(4)“但以刘日薄西山,气息奄奄”用了什么修辞手法?
答:(1)第一层至“特为尤甚”,打出“圣朝以孝治天下”的旗号,作为自己不能奉召出仕的最重要的道德依据。第二层至“在所希翼”,表明自己不能奉召出仕,并不是忠于前朝,保全名节,以打消晋武帝的疑虑。第三层,叙述祖孙二人相依为命的情况,表明自己尽孝祖母的心迹。
(2)圣朝指晋朝(西晋),“伪朝”指蜀汉。
(3)以子之矛,攻子之盾。
(4)比喻。
成考有疑问、不知道如何总结成考考点内容、不清楚成考报名当地政策,点击底部咨询官网,免费领取复习资料:https://www.87dh.com/xl/
黄冈市2011年高三模拟考试数学文答案
“三鹿奶粉”事件发生后,党中央、国务院高度重视,做出了重大部署,对婴幼儿奶粉进行了三聚氰胺全国专项监督检查,其结果令人震惊。已知三聚氰胺的结构简式如图所示(抱歉我现在不能传),下列说法正确的是:
A.三聚氰胺的分子式是N6H6
B.三聚氰胺溶液显碱性
C.三聚氰胺中氮的百分含量为80%
D.三聚氰胺为平面结构
答案:B
湖北省黄冈市黄州区一中2011届高三2011年数学模拟试卷二
选择题
1.则( )
A.21004 B.-21004 C.22008 D.-22008
A
解析 。
2.定义集合运算:.设,,则集合 的所有元素之和为( )
A.0 B.2 C.3 D.6
D
3.已知a,b∈R,且a>b,则下列不等式中恒成立的是( )
A.a2>b2 B.() a <()b C.lg(a-b)>0 D.>1
4.已知条件: =,条件:直线与圆相切,则是的
( )条件
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
A
解析 :直线与圆相切。
5. 已知集合的集合T= ( )
A、 B、 C、 D、
A
解析 ,因为,所以选(A)。
6.设,则等于( )
A. B. C. D.
D
解析 ,选(D)
7.已知圆,点(-2,0)及点(2,),从点观察点,要使视线不被圆挡住,则的取值范围是 ( )
A.(-∞,-1)∪(-1,+∞)
B.(-∞,-2)∪(2,+∞)
C.(-∞,)∪(,+∞)
D.(-∞,-4)∪(4,+∞)
C
解析 如图,,。所以的取值范围是(C)。
8.(文)( )
A. B. C. D.
D
解析 。
(理)从5男4女中选4位代表,其中至少有2位男生,且至少有1位女生,分别到四个不同的工厂调查,不同的分派方法有( )
A. 100种 B. 400种 C. 480种w.w.w.k.s.5 u.c.o.m D.2400种
D
解析 。
9.函数对任意正整数a、b满足条件,且。则
的值是( )
A.2007 B.2008 C.2006 D.2005
B
解析 因为,所以,即,所以
10.已知函数,则对于任意实数、,取值的情况是( )
A.大于0 B.小于0 C. 等于0 D.不确定
A
解析 函数是奇函数,且在R上单调增。不妨设,则,所以,所以,所以。
11.为了大力改善交通,庆祝国庆60周年,某地区准备在国庆60周年来临之际,开通A,
B两地之间的公交线路。已知A,B相距15公里,公交的规划要求如下:相邻两个站点之间的距离相等,经过每一站点的汽车前后间隔时间为3分钟,忽略停车时间,设计汽车的行使速度是60公里每小时,则在A,B两地之间投入运行的汽车至少需要( )辆。
A.9 B.10 C.11 D.12
B
解析 因为每3分钟一班,行使速度是60公里每小时,所以相邻两个站点之间的距离是3公里,所以从A,B单程需要6个站点,即需要6辆汽车,再加上从B到A需要4辆汽车,所以共需要10辆汽车。
12.已知等差数列{a}的前n项和为S,若,,则此数列{a}中绝
对值最小的项是( )
A B C D
C
解析 因为,,所以,所以,所以
,所以此数列{a}中绝对值最小的项是。
填空题
13.执行右边的程序框图,若,则输出的
解析 。
14.(文)利用随机模拟方法计算与围成的面积时,利用计算器产生两组0~1区间的均匀随机数,,然后进行平移与伸缩变换,,试验进行100次,前98次中落在所求面积区域内的样本点数为65,已知最后两次试验的随机数,及,,那么本次模拟得出的面积为
10.72
解析 由,得:,点落在与围成的区域
内,由,得:,点也落在与
围成的区域内,所以本次模拟得出的面积为。
(理)极坐标方程表示的曲线是
一条直线和一个圆
解析 ,
则或。
15.(文)某师傅需用合板制作一个工作台,工作台由主体和附属两部分组成,主体部分全封闭,附属部分是为了防止工件滑出台面而设置的护墙,其大致形状的三视图如右图所示(单位长度: cm), 则按图中尺寸,做成的工作台用去的合板的面积为 (制作过程合板损耗和合板厚度忽略不计)。
解析 由三视图知该工作台是棱长为80的正方体上面围上一块矩形和两块直角三角形合板,如右图示,则用去的合板的面积。
(理)如果1N能拉长弹簧1cm,为了将弹簧拉长6cm,需做功 J。
0.18
解析 ,所以,所以。
16.(文)已知满足:,则函数的取值范围是
解析 ,其中。作出可行域得,即,又因为函数在上单调增,所以,所以。
(理) 设,则的最小值为
8
解析 设,由柯西不等式得:
,当且仅当同向时,等号成立。又,所以,所以的最小值为8。
解答题
17.如图,已知点和单位圆上半部分上的动点.
⑴若,求向量;
⑵求的最大值.
解析⑴依题意,,(不含1个或2个端点也对),
,(写出1个即可),
因为,所以,即,解得,
所以;
⑵,
。当时,取得最大值,。
18.(文)在新中国建立的60年,特别是改革开放30年以来,我国的经济快速增长,人民的生活水平稳步提高。某地2006年到2008年每年的用电量与GDP的资料如下:
日 期 2006年 2007年 2008年
用电量(x亿度) 11 13 12
GDP增长率(y(百分数)) 25 30 26
(1)用表中的数据可以求得,试求出y关于x的线性回归方程;
(2)根据以往的统计资料:当地每年的GDP每增长,就会带动1万就业。由于受金融危机的影响,预计2009年的用电量是8亿度,2009年当地新增就业人口是20万,请你估计这些新增就业人口的就业率。
解析 (1)由数据求得,所以.所以y关于x的线性回归方程为;
(2)当时,,所以预测2009年当地的GDP增长,从而可以带动当地的新增就业人口17万,估计这些新增就业人口的就业率。
(理)某单位有8名员工,其中有5名员工曾经参加过一种或几种技能培训,另外3名员工
没有参加过任何技能培训,现要从8名员工中任选3人参加一种新的技能培训。
(I)求恰好选到1名曾经参加过技能培训的员工的概率;
(II)这次培训结束后,仍然没有参加过任何技能培训的员工人数X是一个随机变量,求X
的分布列和数学期望.
解析(I)恰好选到1名已参加过其他技能培训的员工的概率
(II)随机变量X可能取的值是:0,1,2,3.
∴随机变量X的分布列是
X 0 1 2 3
P
∴X的数学期望。
19.(文)一个多面体的三视图(正前方垂直于平面)及直观图如图所示,M、N分别是A1B、B1C1的中点。
(1)计算多面体的体积;
(2)求证‖平面;
(3)若点是AB的中点,求证AM平面。
解析(1)如右图可知,在这个多面体的直观图中,AA1⊥平面ABC,且AC⊥BC,AC=BC=CC1=,所以;
(2)连,由矩形性质得:AB1与A1B交于点M,在△AB1C1中,由中位线性质得MN//AC1,又因为平面ACC1A1,所以MN‖平面;
(3)在矩形中,,,所以,所以,又因为平面平面,,所以平面,所以,即,又,所以平面,即AM平面。
(理)已知中,,,⊥平面,,、分别是、上的动点,且.
(1)求证不论为何值,总有平面⊥平面;
(2)若平面与平面所成的二面角的大小为,求的值。
解析(1)∵⊥平面,∴,又在中,,∴,又,∴⊥平面,又在中、分别是、上的动点,且,∴,∴⊥平面,又平面,∴不论为何值,总有平面⊥平面;
(2)过点作,∵⊥平面,∴⊥平面,又在中,,∴,如图,以为原点,建立空间直角坐标系.又在中,,,∴。又在中,,∴,则。
∵,∴,∵,∴,
又∵, ,
设是平面的法向量,则,因为,所以,因为=(0,1,0),所以,令得,,因为 是平面的法向量,且平面与平面所成的二面角为,,∴,∴或(不合题意,舍去),故当平面与平面所成的二面角的大小为时。
20.已知函数有极值.
(Ⅰ)求的取值范围;
(Ⅱ)若在处取得极值,且当时,恒成立,求的取值范围.
解析(Ⅰ)∵,∴, 要使有极值,则方程有两个实数解,从而△=,∴.
(Ⅱ)∵在处取得极值,∴,∴.
∴,∵,∴当时,,函数单调递增,当时,,函数单调递减.∴时,在处取得最大值, ∵时,恒成立,
∴,即,∴或,即的取值范围是。
21.已知椭圆,的右焦点为F,上顶点为A,P为C1上任一点,圆心在y轴上的圆C2与斜率为的直线切于点B,且AF‖。
(1)求圆的方程及椭圆的离心率。
(2)过P作圆C2的切线PE,PG,若的最小值为,求椭圆的方程。
解析(1)由圆心在y轴上的圆C2与斜率为1的直线切于点B,所以圆心在过B且垂直于的直线上,又圆心在y轴上,则圆心C2(0,3),
圆心到直线的距离,所以所求圆C2方程为:,又AF‖,,所以有,即,椭圆的离心率为;
(2)设
在中, ,由椭圆的几何性质有:
,所以有,因,所以,
所以椭圆的方程为。
22.(文科)(1)若数列是数列的子数列,试判断与的大小关系;
(2)在数列中,已知是一个公差不为零的等差数列,a5=6。
当且
②若存在自然数
构成一个等比数列。求证:当a3是整数时,a3必为12的正约数。
解析(1);
(2)①因为,从而,
,;
②因为,即
因为必为12的正约数。
(理科)已知数列R)对于。
(Ⅰ)当;
(Ⅱ)若,求数列的通项;
(Ⅲ)证明在数列中,存在一项满足≤3。
解析(I),;
当。因此 。
(II),,。
∴猜想对于任意正整数l有(即是周
期为4的数列)。
下面用数学归纳法证明。
(i)时,成立;
(ii)假设当时,成立。
,
,,
,。
由(i)(ii)可知对任意。
同理可证 。
(III)假设对所有的n,,所以数列是首项
为a,公差为-3的等差数列,所以,所以存在充分大的
n,使得,这与假设矛盾,∴假设不成立,∴在数列中,存在一项满足≤3。