您现在的位置是: 首页 > 教育研究 教育研究
2017年数学高考的答案,2017年数学高考题及答案
tamoadmin 2024-07-16 人已围观
简介1.2017年广东高考理科数学难不难,难度系数解读答案点评解析2.17年高考数学是怎么了3.2017年江苏高考数学试卷结构 各题型分值是多少分4.山东高考文科数学的答案5.全国甲卷高考数学试卷真题和答案解析[Word文字版]6.求这道高考数学题的详解!!2017年高考全国1卷数学题计算量有些大数学的第19道题是一个概率统计题,此题有点难度,涉及的知识点比较生疏.全国卷的数学题没有想象中那么难”“和
1.2017年广东高考理科数学难不难,难度系数解读答案点评解析
2.17年高考数学是怎么了
3.2017年江苏高考数学试卷结构 各题型分值是多少分
4.山东高考文科数学的答案
5.全国甲卷高考数学试卷真题和答案解析[Word文字版]
6.求这道高考数学题的详解!!
2017年高考全国1卷数学题计算量有些大
数学的第19道题是一个概率统计题,此题有点难度,涉及的知识点比较生疏.
全国卷的数学题没有想象中那么难”“和平时训练的试题难度差不多”“感觉还好”……大多数考生反映数学没有出现怪题、偏题,难度和平时训练的相差不大。
“理科数学卷压轴题21题,这是一道导数题,此题的难度并不大。对许多考生来说,难度比预想的要容易一些。”
在理科数学试卷里,选择、填空的压轴题难度比平时训练的要简单一些,但是,一些应用题的计算量有些大,“有的考生称没有做完试卷。”
2017年广东高考理科数学难不难,难度系数解读答案点评解析
对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。
高考文科数学知识点
第一,函数与导数
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
第七,解析几何
高考的难点,运算量大,一般含参数。
文科数学高频必考考点
第一部分:选择与填空
1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);
2.常用逻辑用语(充要条件,全称量词与存在量词的判定);
3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);
4.幂、指、对函数式运算及图像和性质
5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);
6.空间体的三视图及其还原图的表面积和体积;
7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;
8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;
9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);
10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;
11.三角恒等变形(切化弦、升降幂、角公式);三角求值、三角函数图像与性质;
12.向量数量积、坐标运算、向量的几何意义的应用;
13.正余弦定理应用及解三角形;
14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;
15.线性规划的应用;会求目标函数;
16.圆锥曲线的性质应用(特别是会求离心率);
17.导数的几何意义及运算、定积分简单求法
18.复数的概念、四则运算及几何意义;
19.抽象函数的识别与应用;
第二部分:解答题
第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;
第18题:(文)概率与统计(概率与统计相结合型)
(理)离散型随机变量的概率分布列及其数字特征;
第19题:立体几何
①证线面平行垂直;面与面平行垂直
②求空间中角(理科特别是二面角的求法)
③求距离(理科:动态性)空间体体积;
第20题:解析几何(注重思维能力与技巧,减少计算量)
①求曲线轨迹方程(用定义或待定系数法)
②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)
③求定点、定值、最值,求参数取值的问题;
第21题:函数与导数的综合应用
这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。
主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想
一般设计三问:
①求待定系数,利用求导讨论确定函数的单调性;
②求参变数取值或函数的最值;
③探究性问题或证不等式恒成立问题。
第22题:三选一:
(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;
(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。
(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。
2018高考文科数学知识点:高中数学知识点 总结
必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
高考文科数学知识点总结
乘法与因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/aX1__X2=c/a注:韦达定理
判别式
b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有一个实根
b2-4ac<0注:方程有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积公式
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圆半径
余弦定理:b2=a2+c2-2accosB
注:角B是边a和边c的夹角
高考文科数学知识点总结相关 文章 :
★ 2022北京卷高考文科数学试题及答案解析
★ 2022全国新高考Ⅰ卷文科数学试题及答案解析
★ 2022年全国新高考1卷数学试题及答案解析
★ 2022全国新高考Ⅱ卷文科数学试题及答案解析
★ 高中导数知识点总结大全
★ 山东2022高考文科数学试题及答案解析
★ 湖北2022高考文科数学试题及答案解析
★ 2022河北高考文科数学试题及答案解析
★ 高中文科数学复习指导与注意事项
★ 2017高考数学三角函数知识点总结
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "s://hm.baidu/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();17年高考数学是怎么了
1、2017年广东省高考理科数学试卷为全国卷,今年的数学科目全国卷难度稍有增加,但没有出现大的难度变化。
2、据今年高考考生反映,全国卷的数学科目比较难,大部分考生认为会影响到高考的发挥。
2017年江苏高考数学试卷结构 各题型分值是多少分
2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。
2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,符合教育部颁发的《高中数学课程标准》的要求,又在一定程度上加以适度创新,注重考查考生的数学思维和能力。
体现出命题人关注考生学习数学所具备的素养和潜力,倡导用数学的思维进行数学学习,感受数学的思维过程。2017年高考数学试题评析: 加强理性思维考查,突出创新应用。
高考数学必考知识点归纳如下
1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
2、概率和统计,这部分和生活联系比较大,属应用题。
3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。
4、考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
山东高考文科数学的答案
1-14是填空题,每题5分,15-20是解答题,前三题每题14分,后三题每题16分,每个解答题有2到3小题,共160分。
理科还有附加题,第21题是四选二,21a是平面几何证明,21b是矩阵,21c是坐标系与参数方程,21d是不等式,考生从四条中选两题作答,每题10分,满分20分。22和23题不确定,可以考概率分布,空间向量,解析几何(侧重抛物线),计数原理,数学归纳法,二项式定理等,也是每题10分,附加题一共40分。
全国甲卷高考数学试卷真题和答案解析[Word文字版]
试题与答案
数学试题(文科)
第Ⅰ卷 选择题(共50分)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)
1.已知集合 , ,则 =( A )
A. B.
C. D.
2.若复数 ( , 为虚数单位位)是纯虚数,则实数 的值为( )
A.6 B.-2 C.4 D.-6
3.已知 ,则“ ”是“ ”的 ( B )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.已知点P(x,y)在不等式组 表示的平面区域上运动,
则z=x-y的取值范围是( )
A.[-2,-1] B.[-1,2] C.[-2,1] D.[1,2]
5.双曲线 的离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为( )
A. B. C. D.
一年级 二年级 三年级
女生 373
男生 377 370
6.某校共有学生2000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的
学生人数为( )
A.24 B.18 C.16 D.12
7.平面向量 =( )
A.1 B.2 C.3 D.
8.在等差数列 中,已知 ,那么 的值为( )
A.-30 B.15 C.-60 D.-15
9.设 、 为两个不同的平面,l、m为两条不同的直线,且l ,m ,有如下的两个命题:①若 ‖ ,则l‖m;②若l⊥m,则 ⊥ .那么( )
A.①是真命题,②是命题 B.①是命题,②是真命题
C.①②都是真命题 D.①②都是命题
10.已知一个几何体的三视图如所示,则该几何体的体积为( )
A.6 B.5.5
C.5 D.4.5
第Ⅱ卷 非选择题(共100分)
二、填空题:本大题共7小题,考生作答5小题,每小题5分,满分25分.
(一)必做题(11~14题)
11.已知 ,且 是第二象限的角,
则 ___________.
12.执行右边的程序框图,若 =12, 则输
出的 = ;
13.函数 若
则 的值为: ;
14.圆 上的点到直线 的最大距离与最小距离之差是: _____________.
(二)选做题(15~17题,考生只能从中选做一题)
15.(选修4—4坐标系与参数方程)曲线 与曲线 的位置关系是: (填“相交”、 “相切”或“相离”) ;
16.(选修4—5 不等式选讲)不等式 的解集是: ;
17.(选修4—1 几何证明选讲)已知 是圆 的切线,切点为 , . 是圆 的直径, 与圆 交于点 , ,则圆 的半径 .
三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分)
18.(本小题12分)
已知向量 , ,设 .
(1).求 的值;
(2).当 时,求函数 的值域。
19.(本小题12分)
已知函数 .
(1)若 从集合 中任取一个元素, 从集合 中任取一个元素,
求方程 有两个不相等实根的概率;
(2)若 从区间 中任取一个数, 从区间 中任取一个数,求方程 没有实根的概率.
20.(本小题12分)
在平面直角坐标系xoy中,已知四点 A(2,0), B(-2,0), C(0,-2),D(-2,-2),把坐标系平面沿y轴折为直二面角.
(1)求证:BC⊥AD;
(2)求三棱锥C—AOD的体积.
21.(本小题12分)
已知数列 的前n项和为 , 且满足 ,
(1) 求 的值;
(2) 求证:数列 是等比数列;
(3) 若 , 求数列 的前n项和 .
22、(本小题13分)
已知函数 在点 处的切线方程为 .
(1)求 的值;
(2)求函数 的单调区间;
(3)求函数 的值域.
23.(本小题14分)已知椭圆 两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足 =1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求直线AB的斜率;
(3)求△PAB面积的最大值.
文科数学参考答案与评分标准
一、选择题:
A卷选择题答案
题号 1 2 3 4 5 6 7 8 9 10
答案 A D A B D C B A D C
B卷选择题答案
题号 1 2 3 4 5 6 7 8 9 10
答案
二、填空题:
(一)必做题
11. ; 12.4.; 13.1或 ; 14. .
(二)选做题
15.相交;16. ;17. .
三、解答题:
18.解: =
=
= ……………………………………(4分)
(1)
= …………………………(8分)
(2)当 时, ,
∴ ………………………(12分)
19.解:(1)a取集合{0,1,2,3}中任一元素,b取集合{0,1,2}中任一元素
∴a、b的取值情况有(0,0),(0,1)(0,2)(1,0)(1,1)(1,2)(2,0),
(2,1),(2,2),(3,0)(3,1)(3,2)其中第一个数表示a的取值,第二个数表示b的取值,基本总数为12.
设“方程 有两个不相等的实根”为A,
当 时方程 有两个不相等实根的充要条件为
当 时, 的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2)
即A包含的基本数为6.
∴方程 有两个不相等的实根的概率
……………………………………………………(6分)
(2)∵a从区间〔0,2〕中任取一个数,b从区间〔0,3〕中任取一个数
则试验的全部结果构成区域
这是一个矩形区域,其面积
设“方程 没有实根”为B
则B构成的区域为
即图中阴影部分的梯形,其面积
由几何概型的概率计算公式可得方程 没有实根的概率
………………………………………………(12分)
20.解法一:(1)∵BOCD为正方形,
∴BC⊥OD, ∠AOB为二面角B-CO-A的平面角
∴AO⊥BO ∵AO⊥CO 且BO∩CO=O
∴AO⊥平面BCO 又∵
∴AO⊥BC 且DO∩AO=O ∴BC⊥平面ADO
∴BC⊥AD …………(6分)
(2) …………………………(12分)
21.解:(1)因为 ,令 , 解得 ……1分
再分别令 ,解得 ……………………………3分
(2)因为 ,
所以 ,
两个代数式相减得到 ……………………………5分
所以 ,
又因为 ,所以 构成首项为2, 公比为2的等比数列…7分
(3)因为 构成首项为2, 公比为2的等比数列
所以 ,所以 ……………………………8分
因为 ,所以
所以
令
因此 ……………………………11分
所以 ………………………12分
22.解:(1)
∵ 在点 处的切线方程为 .
∴ …………………………(5)
(2)由(1)知: ,
x
2
+ 0 — 0 +
极大
极小
∴ 的单调递增区间是: 和
的单调递减区间是: ………………………………(9)
(3)由(2)知:当x= -1时, 取最小值
当x= 2时, 取最大值
且当 时, ;又当x<0时, ,
所以 的值域为 ………………………………………(13)
23.解:(1) , ,设
则 ,
又 , ,∴ ,即所求 ……(5分)
(2)设 : 联立
得:
∵ ,∴ ,
则
同理 , ∴ ……(10分)
(3)设 : ,联立
,得: ,∴
∴|AB|=
而
∴S=
当且仅当m=±2时等号成立。…………………………………(14分)
求这道高考数学题的详解!!
一、全国甲卷高考数学试卷真题和答案解析全国甲卷高考数学试卷真题和答案解析正在快马加鞭的整理当真,考试结束后我们第一时间发布word文字版。考生可以在线点击阅览: ://.creditsailing/zt/gaokao/daxuepaiming.html
二、全国甲卷高考数学卷答题技巧
1.对于会做的题目,要解决"会而不对,对而不全"这个老大难问题.有的考生拿到题目,明明会做,但最终答案却是错的--会而不对.有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤--对而不全.因此,会做的题目要特别注意高考数学解答题答题技巧及题型特点,防止被"分段扣点分".经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以"做不出来的题目得一二分易,做得出来的题目得满分难".
2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分.我们说,有什么样的解题策略,就有什么样的得分策略.把你解题的真实过程原原本本写出来,就是"分段得分"的全部秘密。
(1)缺步解答.如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分.
(2)跳步答题.解题过程卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一"卡壳处".由于考试时间的限制,"卡壳处"的攻克如果来不及了,就可以把前面的写下来,再写出"证实某步之后,继续有……"一直做到底.也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面.若题目有两问,第一问想不出来,可把第一问作"已知","先做第二问",这也是跳步解答.
(3)退步解答."以退求进"是一个重要的解题策略.如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论.总之,退到一个你能够解决的问题.为了不产生"以偏概全"的误解,应开门见山写上"本题分几种情况".这样,还会为寻找正确的、一般性的解法提供有意义的启发.
(4)解答.一道题目的完整解答,既有主要的实质性的步骤,也有次要的性的步骤.实质性的步骤未找到之前,找性的步骤是明智之举.如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等.答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率.试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。
考生一定要时刻注意完善自己,努力让解答题的满分,那就一定要仔细阅读高考数学解答题满分答题技巧,预祝考生取得优异的成绩。
三、全国甲卷哪些省份使用
适用地区:云南、广西、贵州、四川、西藏
四、全国甲卷和乙卷的区别
1、乙卷难度比甲卷高。乙卷英语和物理科目能够明显看出来比甲卷难,不过一些学生会觉得甲卷更难一些,这根据学生学习的大体程度去判断。不过乙卷和甲卷都会在高考中使用。
2、乙卷和甲卷使用的省份不同。乙卷使用的省区:山西、河北、河南、安徽、湖北、湖南、江西、福建等等;甲卷使用的省区:陕西、重庆、青海、新疆、吉林、辽宁、内蒙古等等。
3、乙卷和甲卷里面的科目内容也不同。乙卷科目:英语和综合;甲卷科目:数学、语文、英语。 五、全国甲卷高考数学试卷答案解析 (1).2022年全国甲卷高考数学试卷试题难不难,附试卷分析和解答 (2).2019年吉林高考全国甲卷(2卷)理科数学试卷真题难度答案解析(WORD文字版) (3).2019年吉林高考全国甲卷(2卷)文科数学试卷真题难度答案解析(WORD文字版) (4).2019年黑龙江高考全国甲卷(2卷)理科数学试卷真题难度答案解析(WORD文字版) (5).2019年黑龙江高考全国甲卷(2卷)文科数学试卷真题难度答案解析(WORD文字版) (6).2019年贵州高考全国甲卷(2卷)理科数学试卷真题难度答案解析(WORD文字版) (7).2019年贵州高考全国甲卷(2卷)文科数学试卷真题难度答案解析(WORD文字版) (8).2019年高考全国甲卷理科数学试卷试题答案解析(WORD下载) (9).2019年高考全国甲卷文科数学试卷试题答案解析(WORD下载) ;
呵呵……
一、用排除法
任取三名总数是(十个里面取三个)10C3=120种
去掉丙入选的(丙确定,剩下九个里面取两个)120-9C2=84种
再去掉甲乙都没入选的(甲乙排除,剩下八个里面取三个)84-8C3=28种
由于丙入选且甲乙都没入选的情况多算了一次(甲乙排除,丙确定,剩下七个里面取两个),所以加上
28+7C2=49种
于是,答案是49种
二、用加法原理
丙没入选可以直接去掉,还剩9个人
即甲入选,乙没入选(乙排除,甲确定,剩下七个取两个)加上乙入选,甲没入选(甲排除,乙确定,剩下七个取两个)加上甲乙都入选(甲乙确定,剩下七个取一个)
7C2+7C2+7C1=49种
确定在组合中即为只有一种。
个人还是比较喜欢排除法。