您现在的位置是: 首页 > 教育研究 教育研究

数学高考文科21题_数学高考题2020文科

tamoadmin 2024-06-14 人已围观

简介1.2010年安徽文科数学高考卷答案及详解(手机能看的)2.2022年高考全国乙卷数学(经典版)(全)多种方法解析压轴题3.今年山东的高考文科数学试题简单么?4.求文档: 2004全国高考数学立体几何题5.2022数二难度如何2011年普通高等学校招生全国统一考试(湖北卷)数学试题(文史类)本试题卷共4页,三大题21小题。全卷满分150分,考试用时120分钟。祝考试顺利注意事项:1.答卷前,考生务

1.2010年安徽文科数学高考卷答案及详解(手机能看的)

2.2022年高考全国乙卷数学(经典版)(全)多种方法解析压轴题

3.今年山东的高考文科数学试题简单么?

4.求文档: 2004全国高考数学立体几何题

5.2022数二难度如何

数学高考文科21题_数学高考题2020文科

2011年普通高等学校招生全国统一考试(湖北卷)

数学试题(文史类)

本试题卷共4页,三大题21小题。全卷满分150分,考试用时120分钟。

★祝考试顺利★

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上。并将准考证号条形码粘贴在答题卡上的指定位置。用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用0.5毫米黑色黑水签字笔直接在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知 则

A. B.

C. D.

2.若向量 ,则2a+b与 的夹角等于

A. B. C. D.

3.若定义在R上的偶函数 和奇函数 满足 ,则 =

A. B. C. D.

4.将两个顶点在抛物线 上,另一个顶点是此抛物线焦点的正三角形个数记为 ,则

A. B.

C. D.

5.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间 内的频数为

A.18 B.36

C.54 D.72

6.已知函数 ,若 ,则x的取值范围为

A. B.

C. D.

7.设球的体积为 ,它的内接正方体的体积为 ,下列说法中最合适的是

A. 比 大约多一半 B. 比 大约多两倍半

C. 比 大约多一倍 D. 比 大约多一倍半

8.直线 与不等式组 表示的平面区域的公共点有

A.0个 B.1个 C.2个 D.无数个

9.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为

A.1升 B. 升 C. 升 D. 升

10.若实数a,b满足 ,且 ,则称a与b互补,记 那么 是a与b互补的

A.必要而不充分的条件 B.充分而不必要的条件

C.充要条件 D.既不充分也不必要的条件

二、填空题:本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写,答错位置,书写不清,模棱两可均不得分。

11.某市有大型超市200家、中型超市400家、小型超市1400家。为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市__________家。

12. 的展开式中含 的项的系数为__________。(结果用数值表示)

13.在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为__________。(结果用最简分数表示)

14.过点(—1,—2)的直线l被圆 截得的弦长为 ,则直线l的斜率为__________。

15.里氏震级M的计算公式为: ,其中A是测震仪记录的地震曲线的最大振幅, 是相应的标准地震的振幅。假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为 级;9级地震的最大振幅是5级地震最大振幅的 倍。

三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)

设 的内角A、B、C所对的边分别为a、b、c,已知

(I) 求 的周长;

(II)求 的值。

17.(本小题满分12分)

成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列 中的 、 、 。

(I) 求数列 的通项公式;

(II) 数列 的前n项和为 ,求证:数列 是等比数列。

18.(本小题满分12分)

如图,已知正三棱柱 - 的底面边长为2,侧棱长为 ,点E在侧棱 上,点F在侧棱 上,且 , .

(I) 求证: ;

(II) 求二面角 的大小。

19.(本小题满分12分)

提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆 /千米)的函数,当桥上的车流密度达到200辆 /千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆 /千米时,车流速度为60千米/小时,研究表明:当 时,车流速度v是车流密度x的一次函数。

(I)当 时,求函数v(x)的表达式;

(II)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时) 可以达到最大,并求出最大值。(精确到1辆/小时)。

20.(本小题满分13分)

设函数 , ,其中 ,a、b为常数,已知曲线 与 在点(2,0)处有相同的切线l。

(I) 求a、b的值,并写出切线l的方程;

(II)若方程 有三个互不相同的实根0、 、 ,其中 ,且对任意的 , 恒成立,求实数m的取值范围。

21.(本小题满分14分)

平面内与两定点 、 ( )连线的斜率之积等于非零常数m的点的轨迹,加上 、A2 两点所成的曲线C可以是圆、椭圆或双曲线。

(Ⅰ)求曲线C的方程,并讨论C的形状与m值的关系;

(Ⅱ)当 时,对应的曲线为 ;对给定的 ,对应的曲线为 ,设 、 是 的两个焦点。试问:在 上,是否存在点 ,使得△ 的面积 。若存在,求 的值;若不存在,请说明理由。

参考答案

一、选择题:本题主要考查基础知识和基本运算。每小题5分,满分50分。

A卷:1—5ACDCB 6—10ADBBC

B卷:1—5DCABC 6—10ADBBC

二、填空题:本题主要考查基础知识和基本运算,每小题5分,满分25分。

11.20 12.17 13. 14.1或 15.6,10000

三、解答题:本大题共6小题,共75分。解答应写出文字说明,证明过程或演算步骤。

16.本小题主要考查三角函数的基本公式和解斜三角形的基础知识,同时考查基本运算能力。(满分12分)

解:(Ⅰ)

的周长为

(Ⅱ)

,故A为锐角,

17.本小题主要考查等差数列,等比数列及其求和公式等基础知识,同时考查基本运算能力。(满分12分)

解:(Ⅰ)设成等差数列的三个正数分别为

依题意,得

所以 中的 依次为

依题意,有 (舍去)

故 的第3项为5,公比为2。

所以 是以 为首项,2为以比的等比数列,其通项公式为

(Ⅱ)数列 的前 项和 ,即

所以

因此 为首项,公比为2的等比数列。

18.本小题主要考查空间直线与平面的位置关系和二面角的求法,同时考查空间想象能力和推理论证能力。(满分12分)

解法1:(Ⅰ)由已知可得

于是有

所以

(Ⅱ)在 中,由(Ⅰ)可得

于是有EF2+CF2=CE2,所以

又由(Ⅰ)知CF C1E,且 ,所以CF 平面C1EF,

又 平面C1EF,故CF C1F。

于是 即为二面角E—CF—C1的平面角。

由(Ⅰ)知 是等腰直角三角形,所以 ,即所求二面角E—CF—C1的大小为 。

解法2:建立如图所示的空间直角坐标系,则由已知可得

(Ⅰ)

(Ⅱ) ,设平面CEF的一个法向量为

设侧面BC1的一个法向量为

设二面角E—CF—C1的大小为θ,于是由θ为锐角可得

,所以

即所求二面角E—CF—C1的大小为 。

19.本小题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力。(满分12分)

解:(Ⅰ)由题意:当 ;当

再由已知得

故函数 的表达式为

(Ⅱ)依题意并由(Ⅰ)可得

当 为增函数,故当 时,其最大值为60×20=1200;

当 时,

当且仅当 ,即 时,等号成立。

所以,当 在区间[20,200]上取得最大值

综上,当 时, 在区间[0,200]上取得最大值 。

即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时。

20.本题主要考查函数、导数、不等式等基础知识,同时考查综合运用数学知识进行推理论证的能力,以及函数与方程和特殊与一般的思想,(满分13分)

解:(Ⅰ)

由于曲线 在点(2,0)处有相同的切线,

故有

由此得

所以 ,切线 的方程为

(Ⅱ)由(Ⅰ)得 ,所以

依题意,方程 有三个互不相同的实数 ,

故 是方程 的两相异的实根。

所以

又对任意的 成立,

特别地,取 时, 成立,得

由韦达定理,可得

对任意的

所以函数 的最大值为0。

于是当 时,对任意的 恒成立,

综上, 的取值范围是

20.本小题主要考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,以及分类与整合和数形结合的思想。(满分14分)

解:(I)设动点为M,其坐标为 ,

当 时,由条件可得

即 ,

又 的坐标满足

故依题意,曲线C的方程为

当 曲线C的方程为 是焦点在y轴上的椭圆;

当 时,曲线C的方程为 ,C是圆心在原点的圆;

当 时,曲线C的方程为 ,C是焦点在x轴上的椭圆;

当 时,曲线C的方程为 C是焦点在x轴上的双曲线。

(II)由(I)知,当m=-1时,C1的方程为

当 时,

C2的两个焦点分别为

对于给定的 ,

C1上存在点 使得 的充要条件是

由①得 由②得

或 时,

存在点N,使S=|m|a2;

或 时,

不存在满足条件的点N,

当 时,

由 ,

可得

令 ,

则由 ,

从而 ,

于是由 ,

可得

综上可得:

当 时,在C1上,存在点N,使得

当 时,在C1上,存在点N,使得

当 时,在C1上,不存在满足条件的点N。

2010年安徽文科数学高考卷答案及详解(手机能看的)

文科 数学 会考哪些题型呢?什么题型是最常考的?高三文科生在复习时要着重复习哪些题型呢?下面和我一起来看看吧!

文科数学常考题型有哪些

圆/坐标系与参数方程/不等式

一般全国卷文科数学的第22至24题会考圆/坐标系与参数方程/不等式三道选做题。参数方程是大家选做最多的一道题,参数方程主要考查轨迹方程计算方法、三角换元求最值、极坐标方程和直角坐标方程转化等,这道题相对容易做。

函数

一般全国卷文科数学的第21题会考函数题。高考对三角函数知识主要考查三角函数及解三角形两部分知识。主要知识点有三角函数概念。恒等变形、同角关系等。三角函数还可以和向量知识结合在一起考,也可以和正弦定理、余弦定理结合起来一起考查。

解析几何

一般全国卷文科数学的第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。所以大家不要有畏难情绪,认为这是最后2道大题就觉得有多难,其实如果你认认真真去做了,这道题还是有希望做对的。退一步来说,即便是真的不会了,那也可以得一些步骤分,前一两问还是没问题的。

立体几何

一般全国卷文科数学的第19题会考立体几何题。例题几何也不难,但大家一定要敢于尝试,敢于动笔写,不要说没有做题思路就放弃这道题。只要你按照常规的方法做就可以,然后一步步分析下去,边分析边写步骤,结果自然就出来了。如果没思路可以尝试2种以上的方法做。

概率

一般全国卷文科数学的第18题会考概率题。概率题相对比较简单,也是必须得分的题,这道题主要频数分布表、频率分布直方图、回归方程的求法、概率计算、相关系数的计算等等。主要还是对作图和识图能力考查比较多。

三角函数/数列

一般全国卷文科数学的第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。数列题可以多总结一些类型题,分析归类,找到其中规律,题做多了,自然就有思路了。

文科数学成绩怎么提高

文科数学的一大特色,就在于你可以通过有效的总结来代替无尽的习题。总结并不代表一味地抄公式抄概念,而应该用自己的语言和做题经验归纳出针对自身的解题技巧,这也就是我所谓的“翻译”。事实上,高三一年我花在总结上的工夫与做题相比有过之而无不及。

粗心大意是文科数学学习中难以绕过的一大障碍,然而粗心只是表象,追本溯源仍是不够熟练。心态的调整亦无需花费额外的精力。我所采取的措施是在临考一个月时找来近三年的 高考试题 ,在规定的时间内细做一遍,并将答案写在卷上,达到降低高考恐惧感,增强自信心的目的。

我推荐:高考数学复习重点题型有哪些

“偷懒”的第一要任就在于减少复习的负荷量。数学学习最大的负荷是永无止境的题海。开学伊始,我便整理出一个大体的概念框架,突出重点和难点。这样在第一轮复习大家都埋头做题之时,我便早早地跳出了题海。省下时间只是手段,把精力花在研究“精题”上才是目的。经验表明,选做精题为短期内成绩攀升打下了坚实的基础。

2022年高考全国乙卷数学(经典版)(全)多种方法解析压轴题

第Ⅰ卷(选择题 共50分)

一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.

(1)若A= ,B= ,则 =

(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)

答案:C 解析:画数轴易知.

(2)已知 ,则i( )=

(A) (B) (C) (D)

答案:B 解析:直接计算.

(3)设向量 , ,则下列结论中正确的是

(A) (B)

(C) (D) 与 垂直

答案:D 解析:利用公式计算,采用排除法.

(4)过 点(1,0)且与直线x-2y-2=0平行的直线方程是

(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0

答案:A 解析:利用点斜式方程.

(5)设数列{ }的前n项和 = ,则 的值为

(A) 15 (B) 16 (C) 49 (D)64

答案:A 解析:利用 =S8-S7,即前8项和减去前7项和.

(6)设abc>0,二次函数f(x)=ax2+bx+c的图像可能是

答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合abc>0产生矛盾,采用排除法易知.

(7)设a= ,b= ,c= ,则a,b,c的大小关系是

(A)a>c>b (B)a>b>c (C)c>a>b (D)b>c>a

答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.

(8)设x,y满足约束条件 则目标 函数z=x+y的最大值是

(A)3 (B) 4 (C) 6 (D)8

答案:C 解析:画出可行域易求.

(9)一个几何体的三视图如图,该几何体的表面积是

(A)372 (C)292

(B)360 (D)280

答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.

(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是

(A) (B) (C) (D)

答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.

数 学(文科)(安徽卷)

第Ⅱ卷(非选择题共100分)

二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置?

(11)命题“存在x∈R,使得x2+2x+5=0”的否定是

答案:对任何X∈R,都有X2+2X+5≠0

解析:依据“存在”的否定为“任何、任意”,易知.

(12)抛物线y2=8x的焦点坐标是

答案:(2,0) 解析:利用定义易知.

(13)如图所示,程序框图(算法流程图)的输出值x=

答案:12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.

(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .

答案:5.7% 解析: , ,易知 .

(15)若a>0 ,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是 . (写出所有正确命题的编号).

①ab≤1; ② + ≤ ; ③a2+b2≥2; ④a3+b3≥3;

答案:①,③,⑤ 解析:①,⑤化简后相同,令a=b=1排除②、易知④ ,再利用 易知③正确

三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.

(16)△ABC的面积是30,内角A,B,C,所对边长分别为a,b,c,cosA= .

(1)求

(2)若c-b= 1,求a的值.

(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.

解:由cosA=1213 ,得sinA= =513 .

又12 bc sinA=30,∴bc=156.

(1) =bc cosA=156?1213 =144.

(2)a2=b2+c2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2?156?(1-1213 )=25,

∴a=5

(17)椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率 .

(1)求椭圆E的方程;

(2)求∠F1AF2的角平分线所在直线的方程.

(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.

解:(1)设椭圆E的方程为 由e=12 ,得ca =12 ,b2=a2-c2 =3c2. ∴ 将A(2,3)代入,有 ,解得:c=2, 椭圆E的方程为

(Ⅱ)由(Ⅰ)知F1(-2,0),F2(2,0),所以直线AF1的方程为 y=34 (X+2),

即3x-4y+6=0. 直线AF2的方程为x=2. 由椭圆E的图形知,

∠F1AF2的角平分线所在直线的斜率为正数.

设P(x,y)为∠F1AF2的角平分线所在直线上任一点,

则有

若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去.

于是3x-4y+6=-5x+10,即2x-y-1=0.

所以∠F1AF2的角平分线所在直线的方程为2x-y-1=0.

18、(本小题满分13分)

某市2010年4月1日—4月30日对空气 污染指数的检测数据如下(主要污染物为可吸入颗粒物):

61,76,70,56,81,91,92,91,75 ,81,88,67,101,103,95,91,

77,86,81,83,82,82,64,79,86,85,75,71,49,45,

(Ⅰ) 完成频率分布表;

(Ⅱ)作出频率分布直方图;

(Ⅲ)根据国家标准,污 染指数在0~50之间时 ,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。

请你依据所给数据和上述标准,对 该市的空气质量给出一个简短评价.

(本小题满分13分)本题考查频数,频数及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和应用意识.

解:(Ⅰ) 频率分布表:

分 组 频 数 频 率

[41,51) 2 230

[51,61) 1 130

[61,71) 4 430

[71,81) 6 630

[81,91) 10 1030

[91,101) 5 530

[101,111) 2 230

(Ⅱ)频率分布直方图:

(Ⅲ)答对下述两条中的一条即可:

(i)该市一个月中空气污染指数有2天处于优的水平,占当月天数的115 . 有26天处于良好的水平,占当月天数的1315 . 处于优或良的天数共有28天,占当月天数的1415 . 说明该市空气质量基本良好.

(ii)轻微污染有2天,占当月天数的115 . 污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730 ,超过50%. 说明该市空气质量有待进一步改善.

(19) (本小题满分13分)

如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,E F∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,

(Ⅰ)求证:FH∥平面EDB;

(Ⅱ)求证:AC⊥平面EDB;

(Ⅲ)求四面体B—DEF的体积;

(本小题满分13分)本题考查空间线面平行,线面垂直,面面垂直,体积的计算等基础知识,同时考查空间想象能力与推理论证能力.

(Ⅰ) 证:设AC与BD交于点G,则G为AC的中点. 连EG,GH,由于H为BC的中点,故GH∥AB且 GH= AB 又EF∥AB且 EF= AB

∴EF∥GH. 且 EF=GH ∴四边形EFHG为平行四边形.

∴EG∥FH,而EG 平面EDB,∴FH∥平面EDB.

(Ⅱ)证:由四边形ABCD为正方形,有AB⊥BC.

又EF∥AB,∴ EF⊥BC. 而EF⊥FB,∴ EF⊥平面BFC,∴ EF⊥FH.

∴ AB⊥FH.又BF=FC H为BC的中点,FH⊥BC.∴ FH⊥平面ABCD.

∴ FH⊥AC. 又FH∥EG,∴ AC⊥EG. 又AC⊥BD,EG∩BD=G,

∴ AC⊥平面EDB.

(Ⅲ)解:∵ EF⊥FB,∠BFC=90°,∴ BF⊥平面CDEF.

∴ BF为四面体B-DEF的高. 又BC=AB=2, ∴ BF=FC=

(20)(本小题满分12分)

设函数f(x)= sinx-cosx+x+1, 0﹤x﹤2 ,求函数f(x)的单调区间与极值.

(本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力.

解:由f(x)=sinx-cosx+x+1,0﹤x﹤2 ,

知 =cosx+sinx+1,

于是 =1+ sin(x+ ).

令 =0,从而sin(x+ )=- ,得x= ,或x=32 .

当x变化时, ,f(x)变化情况如下表:

X (0, )

( ,32 )

32

(32 ,2 )

+ 0 - 0 +

f(x) 单调递增↗ +2

单调递减↘ 32

单调递增↗

因此,由上表知f(x)的单调递增区间是(0, )与(32 ,2 ),单调递减区间是( ,32 ),极小值为f(32 )=32 ,极大值为f( )= +2.

(21)(本小题满分13分)

设 , ..., ,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y= x相切,对每一个正整数n,圆 都与圆 相互外切,以 表示 的半径,已知 为递增数列.

(Ⅰ)证明: 为等比数列;

(Ⅱ)设 =1,求数列 的前n项和.

(本小题满分13分)本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象能力以及推理论证能力.

解:(Ⅰ)将直线y= x的倾斜角记为 , 则有tan = ,sin = 12 .

设Cn的圆心为( ,0),则由题意知 = sin = 12 ,得 = 2 ;同理 ,题意知 将 = 2 代入,解得 rn+1=3rn.

故{ rn }为公比q=3的等比数列.

(Ⅱ)由于r1=1,q=3,故rn=3n-1,从而 =n? ,

记Sn= , 则有 Sn=1+2?3-1+3?3-2+………+n? . ①

=1?3-1+2?3-2+………+(n-1) ? +n? . ② ①-②,得

=1+3-1 +3-2+………+ -n? = - n? = –(n+ )?

Sn= – (n+ )? .

今年山东的高考文科数学试题简单么?

2022年高考全国乙卷数学(经典版)(全)全方位、不同视角、多种方法解析压轴题

单选压轴题:两个角度解析2022年高考全国乙卷理科数学试题第9题

正弦定理与离心率:全方位解析2022年高考全国乙卷理科数学试题第11题

选择题压轴题:从两个不同方向解析2022年高考全国乙卷理科数学试题第12题

单选压轴题:两个角度解析2022年高考全国乙卷文科数学试题第12题

半分离,全分离,常规解法:三种方法解析2022年高考全国乙卷理科数学试题第16题

常规推导+分离参数:多方法解析2022年高考全国乙卷文科数学试题第20题第(2)问

2022年高考运算最复杂试题最简单解法(第三个方法)以2022年高考全国乙卷理科数学第20题为例再探圆锥曲线极点与极线性质定理

2022年高考运算最复杂试题最简单解法(第三个方法)以2022年高考全国乙卷文科数学第21题为例再探圆锥曲线极点与极线性质定理

函数零点个数问题:多方法解析2022年高考全国乙卷理科数学试题第21题

求文档: 2004全国高考数学立体几何题

中国教育在线讯 2015年高考山东卷数学试题严格遵循考试说明,以能力立意,在考查基础知识和基本技能的同时,注重考查考生的数学思想方法及学科能力,展现了数学的科学价值和人文价值。试题具备基础性和综合性,对知识和能力实现了多角度、多层次地考查,达到了全面考查数学素养的考试要求。

一、立足学科基础,突出主干知识

试卷依据课程标准和考试说明,强调回归基础知识和基本技能的重要性,如文科第1—9题,理科第1—7题,文、理科第11—13题等着眼于考查概念和公式的理解和应用,着眼于考查考生对数学本质的理解。文科第9题和理科第7题不仅考查旋转体体积公式的应用,而且考查了考生对旋转体的结构和生成过程的理解。试卷中有的试题直接源自于课本中的例题和习题,通过适度的改编、整合而成,给人“似曾相识”的感觉,如理科第3,5,9题,文科第4,5,12题及20题第(Ⅲ)问等,充分体现出“源于教材,高于教材”的理念,对中学数学教学具有良好的导向作用。

试卷对数学基础知识全面考查的同时,突出考查中学数学学科体系的核心内容,并达到了必要的深度,三角函数、立体几何、概率统计、数列、函数与导数、解析几何等主干知识在整份试卷中得到充分考查。如函数与导数的内容文科有第3,7,8,10,20题等,理科第10,14,21题等。立体几何的考查重点放在图形中线线关系、线面关系以及面面关系的识别、想象和推理上。解析几何的考查重点放在圆锥曲线的几何意义与性质、数形结合和运动变换上。题目设计以重点知识为核心,将知识和能力结合,数学味浓,力求从学科整体的高度在几个知识层面的交汇处设计试题,以检验考生是否具备一个有序的网络化知识体系,并能从中提取有关信息,灵活地解决问题。

二、注重思想方法,深化能力立意

数学思想方法是数学知识在更高层次上的抽象与概括,它蕴含在数学知识发生、发展和应用的过程中,是由知识向能力转化的重要桥梁。中学数学中常见的数学思想,如函数与方程思想,分类整合思想,数形结合思想,转化与化归思想等,在今年数学试卷的考查中体现得淋漓尽致。如文科第7,13,20题,理科第4,5,8,9,15,17,21题等考查了数形结合思想;文科第10,15题,理科第10,14,21题等考查了分类整合思想;文科第19,20,21题,理科第10,12,20,21题等考查了函数与方程思想;文科第20,21题,理科第17,19,20,21题等考查了转化与化归思想。多数试题的设计门槛低、入口宽,运用的思想方法有层次、有梯度,从而有效地区分不同层次考生的能力水平。这样的设计,体现了以知识为载体,以方法为依托,以考查能力为目的的考查要求,提高了试题的区分度,有利于高校选拔人才。

文理两份试卷注重了对空间想象能力、抽象概括能力、推理论证能力、数据处理能力、运算求解能力及应用意识的考查。试卷以抽象概括能力和推理论证能力为核心,考查考生的探索、发现和创造能力,检测学生的学习潜能。如文科第6题以甲、乙两地气温状况为背景,以茎叶图这一基本形式为载体设计相关统计问题,考查了“概率统计”知识在实际生活中的应用,试题贴近生活,背景公平,考查了考生数据处理能力和应用意识。又如理科第11题以二项展开式为背景,以指数幂运算与组合数运算为知识载体,考查考生的归纳推理的数学思维和能力。

三、重视理性思维,凸显选拔功能

试题的设计知识交汇、方法交织、能力交叉。试题精巧别致,涵盖丰富,体现了数学理性思维的特点,从思维的层次性、深刻性、创新性等方面进行全面考查,凸显了高考试题的选拔功能。

试题注重通性通法,同时又给思维层次较高的考生留足了思维驰骋的空间,充分关注了考生思维层次的差异。如文科第21题,理科第20题,考生可以直接求的面积,也可以根据上一问提示的比例关系,转化为求的面积,简化了运算,思维层次分明。试题综合性强,注重对思维深刻性地考查,如理科第19题以计数原理为载体,以数学应用为背景,考查考生数学应用意识、抽象思维能力、数学建模能力、分析问题和解决问题的能力。若考生没有形成对知识的综合应用能力,思维深度达不到本题的考查要求,则很难完整解答此题。

四、难度设计合理,体现人文关怀

试题难度设计合理,由易到难,层次分明,符合考生的认知规律和学习特点。理科第20题和文科第20、21题均设置了三小问,梯度分明,逐层递进,有利于考生消除紧张情绪,正常发挥。第(1)问思维起点低,考生上手容易,让更多的考生有得分机会,第(2)问和第(3)问思维起点逐步升高,需要考生有较强的探索能力、创造性解决问题的能力。

试题的表述简洁、准确,情境交融,知能并重,符合数学规律,思维量和运算量比例恰当,体现了对考生的人文关怀。试题充分考虑了文、理科考生思维的不同特点,符合文、理科考生各自的认知要求。文、理试卷中完全相同的题目仅有2道,姊妹题有4道,相同知识点的考查以不同方式呈现,体现了对文科考生的人文关怀。如理科第17题和文科第18题题干完全相同,第(Ⅰ)问都是线面平行的证明,第(Ⅱ)问文科是面面垂直的证明,而理科是在证明线线垂直的基础上求二面角。又如文科第21题和理科第20题考查主体相同,而文科第(Ⅰ)问考查了考生熟悉的待定系数法求椭圆方程,理科第(Ⅰ)问则考查了考生在几何背景下探索椭圆的生成过程和图形特征,数形结合,强化推理。在保证有效区分的前提下,文、理科试题的难度设计合理,彰显了 “以人为本”的新课程理念。

总之,2015年高考山东卷数学试题思路清晰,表述简洁,内涵丰富,稳中有变,变中求新,导向准确,利于选拔,在充分考查学科思想和方法的同时,关注人文,体现了山东特色,很好地落实了新课程理念。

2022数二难度如何

1.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第10题,文科数学第10题]

已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则等于()

A.B.C.D.

2.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第16题,文科数学第16题]

已知a、b为不垂直的异面直线,是一个平面,则a、b在上的射影有可能是.

①两条平行直线②两条互相垂直的直线

③同一条直线④一条直线及其外一点

在一面结论中,正确结论的编号是(写出所有正确结论的编号).

3.[2004年全国高考(四川云南吉林黑龙江)文科数学第6题]

正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()

A.75°B.60°C.45°D.30°

4.[2004年全国高考(四川云南吉林黑龙江)理科数学第7题,文科数学第10题]

已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为,则

球心O到平面ABC的距离为()

A.B.C.D.

5.[2004年全国高考(四川云南吉林黑龙江)理科数学第16题,文科数学第16题]

下面是关于四棱柱的四个命题:

①若有两个侧面垂直于底面,则该四棱柱为直四棱柱

②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱

③若四个侧面两两全等,则该四棱柱为直四棱柱

④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱

其中,真命题的编号是(写出所有正确结论的编号).

6.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第9题,文科数学第10题]

正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()

A.B.C.D.

7.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第13题,文科数学第14题]

用平面截半径为的球,如果球心到平面的距离为,那么截得小圆的面积与球的表面积的比值为.

8.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第3题]

正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为()

A.B.C.D.

9.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第7题]

对于直线m、n和平面,下面命题中的真命题是()

A.如果、n是异面直线,那么

B.如果、n是异面直线,那么相交

C.如果、n共面,那么

D.如果、n共面,那么

10.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第11题]

已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平

面ABC的距离为()

A.1B.C.D.2

11.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第10题]

已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=,则球心

到平面ABC的距离为()

A.1B.C.D.2

12.(2004年北京高考·理工第3题,文史第3题)

设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,,则

②若,,,则

③若,,则

④若,,则

其中正确命题的序号是

A. ①和②B. ②和③C. ③和④D. ①和④

13.(2004年北京高考·理工第4题,文史第6题)

如图,在正方体中,P是侧面内一动点,若P到直线BC与直线的距离相等,则动点P的轨迹所在的曲线是

A. 直线B. 圆C. 双曲线D. 抛物线

14.(2004年北京高考·理工第11题,文史第12题)

某地球仪上北纬纬线的长度为,该地球仪的半径是__________cm,

表面积是______________cm2

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题,满分12分]

如图,已知四棱锥 P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.

(I)求点P到平面ABCD的距离;

(II)求面APB与面CPB所成二面角的大小.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题,满分12分]

如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.

(Ⅰ)求证CD⊥平面BDM;

(Ⅱ)求面B1BD与面CBD所成二面角的大小.

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题,满分12分]

三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,

(1)求证:AB ⊥ BC;

(2,理科)设AB=BC=,求AC与平面PBC所成角的大小.

(2,文科) 如果AB=BC=,求侧面PBC与侧面PAC所成二面角的大小.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题,本小题满分12分]

如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.

(Ⅰ)求四棱锥P—ABCD的体积;

(Ⅱ)证明PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

如图,在正三棱柱中,AB=2,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求:

(I)三棱柱的侧面展开图的对角线长

(II)该最短路线的长及的值

(III)平面与平面ABC所成二面角(锐角)的大小

20.(2004年北京高考·理工第16题,本小题满分14分)

如图,在正三棱柱中,AB=3,,M为的中点,P是BC上一点,且由P沿棱柱侧面经过棱到M的最短路线长为,设这条最短路线与的交点为N,求:

(I)该三棱柱的侧面展开图的对角线长

(II)PC和NC的长

(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)

参考答案

1.A2.①②④3.C4.B5.②④6.C7.8.A9.C

10.A11.A12.A13.D14.

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题]

本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.

(I)解:如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE.

∵AD⊥PB,∴AD⊥OB,

∵PA=PD,∴OA=OD,

于是OB平分AD,点E为AD的中点,所以PE⊥AD.

由此知∠PEB为面PAD与面ABCD所成二面角的平面角,

∴∠PEB=120°,∠PEO=60°

由已知可求得PE=

∴PO=PE·sin60°=,

即点P到平面ABCD的距离为.

(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA.

.连结AG.

又知由此得到:

所以

等于所求二面角的平面角,

于是

所以所求二面角的大小为.

解法二:如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG//BC,FG=BC.

∵AD⊥PB,∴BC⊥PB,FG⊥PB,

∴∠AGF是所求二面角的平面角.

∵AD⊥面POB,∴AD⊥EG.

又∵PE=BE,∴EG⊥PB,且∠PEG=60°.

在Rt△PEG中,EG=PE·cos60°=.

在Rt△PEG中,EG=AD=1.

于是tan∠GAE==,

又∠AGF=π-∠GAE.

所以所求二面角的大小为π-arctan.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题]

本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.

满分12分.

解法一:(Ⅰ)如图,连结CA1、AC1、CM,则CA1=

∵CB=CA1=,∴△CBA1为等腰三角形,

又知D为其底边A1B的中点,

∴CD⊥A1B.∵A1C1=1,C1B1=,∴A1B1=

又BB1=1,A1B=2. ∵△A1CB为直角三角形,D为A1B的中点,

∴CD=A1B=1,CD=CC1,又DM=AC1=,DM=C1M.

∴△CDM≌△CC1M,∠CDM=∠CC1M=90°,即CD⊥DM.

因为A1B、DM为平在BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设F、G分别为BC、BD的中点,连结B1G、FG、B1F,则FG//CD,FG=CD.

∴FG=,FG⊥BD.

由侧面矩形BB1A1A的对角线的交点为D知BD=B1D=A1B=1,

所以△BB1D是边长为1的正三角形.

于是B1G⊥BD,B1G=∴∠B1GF是所求二面角的平面角,

又 B1F2=B1B2+BF2=1+(=,

即所求二面角的大小为

解法二:如图,以C为原点建立坐标系.

(Ⅰ)B(,0,0),B1(,1,0),A1(0,1,1),

D(,M(,1,0),

则∴CD⊥A1B,CD⊥DM.

因为A1B、DM为平面BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设BD中点为G,连结B1G,则

G(),、、),

所以所求的二面角等于

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题]

本小题主要考查两个平面垂直的性质、直线与平面所成角等有关知识,以及逻辑思维能力和空间想象能力.满分12分.

(Ⅰ)证明:如图1,取AC中点D,连结PD、BD.

因为PA=PC,所以PD⊥AC,又已知面PAC⊥面ABC,

所以PD⊥面ABC,D为垂足.

因为PA=PB=PC,所以DA=DB=DC,

可知AC为△ABC的外接圆直径,因此AB⊥BC.

(Ⅱ,理科)解:如图2,作CF⊥PB于F,连结AF、DF.

因为△PBC≌△PBA,所以AF⊥PB,AF=CF.

因此,PB⊥平面AFC,

所以面AFC⊥面PBC,交线是CF,

因此直线AC在平面PBC内的射影为直线CF,

∠ACF为AC与平面PBC所成的角.

在Rt△ABC中,AB=BC=2,所以BD=

在Rt△PDC中,DC=

在Rt△PDB中,

在Rt△FDC中,所以∠ACF=30°.

即AC与平面PBC所成角为30°.

(2,文科)解:因为AB=BC,D为AC中点,所以BD⊥AC.

又面PAC⊥面ABC,

所以BD⊥平面PAC,D为垂足.

作BE⊥PC于E,连结DE,

因为DE为BE在平面PAC内的射影,

所以DE⊥PC,∠BED为所求二面角的平面角.

在Rt△ABC中,AB=BC=,所以BD=.

在Rt△PDC中,PC=3,DC=,PD=,

所以

因此,在Rt△BDE中,,

所以侧面PBC与侧面PAC所成的二面角为60°.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题]

本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析

问题能力.满分12分

解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD.

作PO⊥平面在ABCD,垂足为O,连结OE.

根据三垂线定理的逆定理得OE⊥AD,

所以∠PEO为侧面PAD与底面所成的二面角的平面角,

由已知条件可知∠PEO=60°,PE=6,

所以PO=3,四棱锥P—ABCD的体积

VP—ABCD=

(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得

P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

所以

因为所以PA⊥BD.

解法二:如图2,连结AO,延长AO交BD于点F.通过计算可得EO=3,AE=2,

又知AD=4,AB=8,

所以Rt△AEO∽Rt△BAD.

得∠EAO=∠ABD.

所以∠EAO+∠ADF=90°

所以AF⊥BD.

因为直线AF为直线PA在平面ABCD 内的身影,所以PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是长为6,宽为2的矩形

其对角线长为

(II)如图,将侧面绕棱旋转使其与侧面在同一平面上,点B运动到点D的位置,连接交于M,则就是由顶点B沿棱柱侧面经过棱到顶点C1的最短路线,其长为

(III)连接DB,,则DB就是平面与平面ABC的交线

在中

由三垂线定理得

就是平面与平面ABC所成二面角的平面角(锐角)

侧面是正方形

故平面与平面ABC所成的二面角(锐角)为

20.(2004年北京高考·理工第16题)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是一个长为9,宽为4的矩形,其对角线长为

(II)如图1,将侧面绕棱旋转使其与侧成在同一平面上,点P运动到点的位置,连接,则就是由点P沿棱柱侧面经过棱到点M的最短路线

设,则,在中,由勾股定理得

求得

(III)如图2,连结,则就是平面NMP与平面ABC的交线,作于H,又平面ABC,连结CH,由三垂线定理得,

就是平面NMP与平面ABC所成二面角的平面角(锐角)

在中,

在中,

故平面NMP与平面ABC所成二面角(锐角)的大小为

2022数二难度分析如下:

1、数学试卷以中华优秀传统文化为试题情境材料,让学生领略中华民族的智慧和数学研究成果,进一步树立民族自信心和自豪感,培育爱国主义情感。如全国甲卷理科第8题取材于我国古代科学家沈括的杰作《梦溪笔谈》,以沈括研究的圆弧长计算方法“会圆术”为背景,让学生直观感受我国古代科学家探究问题和解决问题的过程,引发学生的学习兴趣。

2、数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。如全国甲卷文、理科第2题以社区环境建设中的“垃圾分类”为背景考查学生的数据分析能力。

3、试卷突出对学科基本概念、基本原理的考查,强调知识之间的内在联系,引导学生形成学科知识系统;注重本原性方法,淡化特殊技巧,强调通性通法的深入理解和综合运用,促进学生将知识和方法内化为自身的知识结构。如全国甲卷第20题考查了数形结合的思想。

4、试卷在选择题、填空题、解答题三种题型都加强了对主干知识的考查。如全国甲卷理科第19题,以学校体育比赛为情境,考查概率的基础知识和求离散型随机变量的分布列与期望的方法,实现了对主干知识的深入考查。

5、数学科高考通过突出思维品质考查,强调独立思考和创新意识。全国甲卷理科第20题、文科第21题,考查了直线、抛物线、三角函数、不等式的基本性质以及解析几何的基本思想方法,要求学生在复杂的直线与抛物线的位置关系中,能抓住问题的本质,发现解决问题的关键,选择合理的方法。

文章标签: # 考查 # 数学 # 平面