您现在的位置是: 首页 > 教育研究 教育研究
各省高考2017数学,2017全国数学高考题
tamoadmin 2024-05-26 人已围观
简介1.17年高考数学是怎么了2.2017年高考理科数学22题。 第二问最后一步怎么求的a的值?其余步骤我都3.2017年数学高考卷子的六道大题4.2017年江苏高考总分及各科分数 分值是多少河北 河南 山西 广西 全国一黑龙江、吉林、内蒙古、宁夏、甘肃、青海、新疆、西藏、贵州、云南、海南。全国二其他省市自主命题沪、京、津、渝、辽、苏、浙、皖、闽、赣、鲁、湘、湖北、广东、四川、陕西17年高考数学是怎
1.17年高考数学是怎么了
2.2017年高考理科数学22题。 第二问最后一步怎么求的a的值?其余步骤我都
3.2017年数学高考卷子的六道大题
4.2017年江苏高考总分及各科分数 分值是多少
河北 河南 山西 广西 全国一
黑龙江、吉林、内蒙古、宁夏、甘肃、青海、新疆、西藏、贵州、云南、海南。全国二
其他省市自主命题
沪、京、津、渝、辽、苏、浙、皖、闽、赣、鲁、湘、湖北、广东、四川、陕西
17年高考数学是怎么了
不大。根据查询贵州教育局官网得知,2017年贵州省普通高考数学题难度不大,没有偏难怪题,区分度较好,试卷所考查的知识和能力符合考试大纲的内容和要求。普通高等学校招生全国统一考试简称高考,是中华人民共和国合格的高中毕业生或具有同等学力的考生参加的选拔性考试。
2017年高考理科数学22题。 第二问最后一步怎么求的a的值?其余步骤我都
2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。
2017年的高考数学试题延续了近几年的命题风格,同时也在题目设置上进行了一些调整。既注重考查考生对基础知识的掌握程度,符合教育部颁发的《高中数学课程标准》的要求,又在一定程度上加以适度创新,注重考查考生的数学思维和能力。
体现出命题人关注考生学习数学所具备的素养和潜力,倡导用数学的思维进行数学学习,感受数学的思维过程。2017年高考数学试题评析: 加强理性思维考查,突出创新应用。
高考数学必考知识点归纳如下
1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
2、概率和统计,这部分和生活联系比较大,属应用题。
3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。
4、考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
2017年数学高考卷子的六道大题
3cosa+4sina可以取值+/-5,在第三象限应为-5,因此-5-4-a=+/-17,解得a=-26/8;综合得a=-16,-26,8,18四个值。
参考答案为-16,18.只取第一象限点了
2017年江苏高考总分及各科分数 分值是多少
17.(12分)
△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长
18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.
19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.
20.(12分)
已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
21.(12分)
已知函数=ae?^x+(a﹣2)e^x﹣x.
(1)?讨论的单调性;
(2)?若有两个零点,求a的取值范围.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4,坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=-1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.
2017年江苏高考总分480分(语数外),其中选修两门按比例划分等级A+、A、B+、B、C、D,不计算分数。
普通高中学生根据校专业选考科目要求,结合自身特长兴趣,首先在物理、历史2门科目中选择 1门,再从思想政治、地理、化学、生物4门科目中选择1门参加考试。以文理科分开进行分数分值解释:
文科生:语文160分+40分(附加)、数学160分、英语120分、选修历史(必选)100分、选修X(自选)100分。
理科生:语文160分、数学160分+40分(附加)、英语120分、选修物理(必选)100分、选修X(自选)100分。
扩展资料2019年4月23日,江苏省人民政府召开“深化普通高校考试招生制度综合改革实施方案”新闻发布会,正式发布江苏2021年高考改革方案。实行“3+1+2”、不分文理、总分750分、使用全国卷模式。
选择性考试科目思想政治、历史、地理、物理、化学、生物6门。学生根据高校的要求结合自身特长兴趣首先在物理、历史2门科目中选择1门再从思想政治、地理、化学、生物4门科目中选择2门考试成绩计入考生总分作为统一高考招生录取的依据。
参加统一高考的学生可以用统一高考的语文、数学、外语科目考试替代相应科目的合格性考试。
百度百科-普通高等学校招生全国统一考试
百度百科-江苏高考新方案