您现在的位置是: 首页 > 教育改革 教育改革

高考正余弦定理高考大题_高考题正余弦

tamoadmin 2024-06-12 人已围观

简介1.高一数学正弦余弦求三角形角和面积问题。有图,求详细过程、2.高考数学三角函数公式口诀3.利用正、余弦定理判断三角形的形状4.求高中三角函数数学题5.高中数学正余弦定理中难题,求提供解答过程!6.数学正弦定理余弦定理公式因为3acosc=4csinA所以3sinAcosC=4sinCsinA3cosC=4sinC cosC=4/5由S=10,b=4csinA=5因为3acosC=4csinA

1.高一数学正弦余弦求三角形角和面积问题。有图,求详细过程、

2.高考数学三角函数公式口诀

3.利用正、余弦定理判断三角形的形状

4.求高中三角函数数学题

5.高中数学正余弦定理中难题,求提供解答过程!

6.数学正弦定理余弦定理公式

高考正余弦定理高考大题_高考题正余弦

因为3acosc=4csinA

所以3sinAcosC=4sinCsinA

3cosC=4sinC

cosC=4/5

由S=10,b=4

csinA=5

因为3acosC=4csinA

a=25 \3

高一数学正弦余弦求三角形角和面积问题。有图,求详细过程、

正弦余弦高考分值20分上下

正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。

古代说法,正弦是股与弦的比例。

余弦数学上指三角函数之一。记号为 cos,即直角三角形中任一锐角的邻边与斜边的比值。

高考数学三角函数公式口诀

(1)问:

根据公式a/sinA = b/sinB = c/sinC = 2r (其中r就是三角形的外接圆的半径)

r = √2 。 sinA= a/2r sinC = c/2r sinB = b/2r

(一) 2√2(sinA*sinA -sinC*sinC)= 2√2[(a/2r)*(a/2r) -(c/2r)*(c/2r)]

= (a*a-c*c)/2√2

(二) (a-b)sinB = (a-b) * b/2r = (a*b -b*b)/2√2

因为上面两个式子相等所以a*a -c*c =a*b -b*b所以a*a +b*b-c*c=a*b

根据余弦定理CosC = (a*a+b*b-c*c)/ 2ab代入上面的式子就得到了cosC = 1/2

所以C= 60°

(2)问:

三角形面积S=0.5a*bsinC = 0.25ab <= 0.25*0.25√3(a+b)(a+b)

当且仅当a = b时取上面的式子等号,即三角形是等边三角形,又因为三角形的外接圆半径是√2,所以

三角形的边长是a=b=c=2rsinA = √3*√2 =√6

S的最大值是0.25*0.25√3(√6+√6)(√6+√6) = 1.5 √3

这一题是一个综合题,做这样的题目首先要根据条件灵活判断使用怎样的公式。由于提供了三角形的外接圆半径,所以可以使用a/sinA = b/sinB = c/sinC = 2r

后面还有一个条件2√2(sinA*sinA -sinC*sinC)= (a-b)sinB 这里面既有角度,又有边长,所以统一化为有角度的。

然后又遇到a*a +b*b-c*c=a*b这样的形式,那我们就用余弦定理CosC = (a*a+b*b-c*c)/ 2ab,进行转化,巧妙地计算出C=60°

下面的计算三角形的题目因为只能确定一个角度C,所以以前我们的计算三角形的公式都不好用了,那么我们就使用公式S = 0.5absinC计算,这样可以用均值不等式(4 ab <= (a+b)(a+b) )进行求最大值

利用正、余弦定理判断三角形的形状

 高考数学所运用的公式多且难记,为了帮助同学们在学习上浪费不必要的时间,我在这里为同学们整理出三角函数的公式和口诀,方便同学们更加容易去理解与牢记公式。

  公式一:

 设?为任意角,终边相同的角的同一三角函数的值相等:

 sin(2k?+?)=sin? (k?Z)

 cos(2k?+?)=cos? (k?Z)

 tan(2k?+?)=tan? (k?Z)

 cot(2k?+?)=cot? (k?Z)

  公式二:

 设?为任意角,?+?的三角函数值与?的三角函数值之间的关系:

 sin(?+?)=-sin?

 cos(?+?)=-cos?

 tan(?+?)=tan?

 cot(?+?)=cot?

  公式三:

 任意角?与 -?的三角函数值之间的关系:

 sin(-?)=-sin?

 cos(-?)=cos?

 tan(-?)=-tan?

 cot(-?)=-cot?

  公式四:

 利用公式二和公式三可以得到?-?与?的三角函数值之间的关系:

 sin(?-?)=sin?

 cos(?-?)=-cos?

 tan(?-?)=-tan?

 cot(?-?)=-cot?

  公式五:

 利用公式一和公式三可以得到2?-?与?的三角函数值之间的关系:

 sin(2?-?)=-sin?

 cos(2?-?)=cos?

 tan(2?-?)=-tan?

 cot(2?-?)=-cot?

  公式六:

 ?/2?及3?/2?与?的三角函数值之间的关系:

 sin(?/2+?)=cos?

 cos(?/2+?)=-sin?

 tan(?/2+?)=-cot?

 cot(?/2+?)=-tan?

 sin(?/2-?)=cos?

 cos(?/2-?)=sin?

 tan(?/2-?)=cot?

 cot(?/2-?)=tan?

 sin(3?/2+?)=-cos?

 cos(3?/2+?)=sin?

 tan(3?/2+?)=-cot?

 cot(3?/2+?)=-tan?

 sin(3?/2-?)=-cos?

 cos(3?/2-?)=-sin?

 tan(3?/2-?)=cot?

 cot(3?/2-?)=tan?

 (以上k?Z)

 注意:在做题时,将a看成锐角来做会比较好做。

  诱导公式记忆口诀

 ※规律总结※

 上面这些诱导公式可以概括为:

 对于?/2*k ?(k?Z)的三角函数值,

 ①当k是偶数时,得到?的同名函数值,即函数名不改变;

 ②当k是奇数时,得到?相应的余函数值,即sin?cos;cos?sin;tan?cot,cot?tan.

 (奇变偶不变)

 然后在前面加上把?看成锐角时原函数值的符号。

 (符号看象限)

 例如:

 sin(2?-?)=sin(4?/2-?),k=4为偶数,所以取sin?。

 当?是锐角时,2?-?(270?,360?),sin(2?-?)<0,符号为“-”。

 所以sin(2?-?)=-sin?

 上述的记忆口诀是:

 奇变偶不变,符号看象限。

 公式右边的符号为把?视为锐角时,角k?360?+?(k?Z),-?、180,360?-?

 所在象限的原三角函数值的符号可记忆

 水平诱导名不变;符号看象限。

 #

 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.

 这十二字口诀的意思就是说:

 第一象限内任何一个角的四种三角函数值都是“+”;

 第二象限内只有正弦是“+”,其余全部是“-”;

 第三象限内切函数是“+”,弦函数是“-”;

 第四象限内只有余弦是“+”,其余全部是“-”.

 上述记忆口诀,一全正,二正弦,三内切,四余弦

 #

 还有一种按照函数类型分象限定正负:

 函数类型 第一象限 第二象限 第三象限 第四象限

 正弦 ...........+............+............?............?........

 余弦 ...........+............?............?............+........

 正切 ...........+............?............+............?........

 余切 ...........+............?............+............?........

 同角三角函数基本关系

 同角三角函数的基本关系式

 倒数关系:

 tan cot?=1

 sin csc?=1

 cos sec?=1

 商的关系:

 sin?/cos?=tan?=sec?/csc?

 cos?/sin?=cot?=csc?/sec?

 平方关系:

 sin^2(?)+cos^2(?)=1

 1+tan^2(?)=sec^2(?)

 1+cot^2(?)=csc^2(?)

 同角三角函数关系六角形记忆法

 六角形记忆法

 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

 (1)倒数关系:对角线上两个函数互为倒数;

 (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

 (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

 (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

  两角和差公式

  两角和与差的三角函数公式

 sin(?+?)=sin?cos?+cos?sin?

 sin(?-?)=sin?cos?-cos?sin?

 cos(?+?)=cos?cos?-sin?sin?

 cos(?-?)=cos?cos?+sin?sin?

 tan(?+?)=(tan?+tan?)/(1-tan?tan?)

 tan(?-?)=(tan?-tan?)/(1+tan?tan?)

  二倍角公式

  二倍角的正弦、余弦和正切公式(升幂缩角公式)

 sin2?=2sin?cos?

 cos2?=cos^2(?)-sin^2(?)=2cos^2(?)-1=1-2sin^2(?)

 tan2?=2tan?/[1-tan^2(?)]

 半角公式

 半角的正弦、余弦和正切公式(降幂扩角公式)

 sin^2(?/2)=(1-cos?)/2

 cos^2(?/2)=(1+cos?)/2

 tan^2(?/2)=(1-cos?)/(1+cos?)

 另也有tan(?/2)=(1-cos?)/sin?=sin?/(1+cos?)

  万能公式

 sin?=2tan(?/2)/[1+tan^2(?/2)]

 cos?=[1-tan^2(?/2)]/[1+tan^2(?/2)]

 tan?=2tan(?/2)/[1-tan^2(?/2)]

  万能公式推导

 附推导:

 sin2?=2sin?cos?=2sin?cos?/(cos^2(?)+sin^2(?))......*,

 (因为cos^2(?)+sin^2(?)=1)

 再把*分式上下同除cos^2(?),可得sin2?=2tan?/(1+tan^2(?))

 然后用?/2代替?即可。

 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

 三倍角公式

 三倍角的正弦、余弦和正切公式

 sin3?=3sin?-4sin^3(?)

 cos3?=4cos^3(?)-3cos?

 tan3?=[3tan?-tan^3(?)]/[1-3tan^2(?)]

  三倍角公式推导

 附推导:

 tan3?=sin3?/cos3?

 =(sin2?cos?+cos2?sin?)/(cos2?cos?-sin2?sin?)

 =(2sin?cos^2(?)+cos^2(?)sin?-sin^3(?))/(cos^3(?)-cos?sin^2(?)-2sin^2(?)cos?)

 上下同除以cos^3(?),得:

 tan3?=(3tan?-tan^3(?))/(1-3tan^2(?))

 sin3?=sin(2?+?)=sin2?cos?+cos2?sin?

 =2sin?cos^2(?)+(1-2sin^2(?))sin?

 =2sin?-2sin^3(?)+sin?-2sin^3(?)

 =3sin?-4sin^3(?)

 cos3?=cos(2?+?)=cos2?cos?-sin2?sin?

 =(2cos^2(?)-1)cos?-2cos?sin^2(?)

 =2cos^3(?)-cos?+(2cos?-2cos^3(?))

 =4cos^3(?)-3cos?

 即

 sin3?=3sin?-4sin^3(?)

 cos3?=4cos^3(?)-3cos?

  三倍角公式联想记忆

  ★记忆方法:谐音、联想

 正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))

 余弦三倍角:4元3角 减 3元(减完之后还有“余”)

 ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

  ★另外的记忆方法:

 正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"sin?, 无指的是减号, 四指的是"4倍", 立指的是sin?立方

 余弦三倍角: 司令无山 与上同理

  和差化积公式

  三角函数的和差化积公式

 sin?+sin?=2sin[(?+?)/2]?cos[(?-?)/2]

 sin?-sin?=2cos[(?+?)/2]?sin[(?-?)/2]

 cos?+cos?=2cos[(?+?)/2]?cos[(?-?)/2]

 cos?-cos?=-2sin[(?+?)/2]?sin[(?-?)/2]

  积化和差公式

  三角函数的积化和差公式

 sin cos?=0.5[sin(?+?)+sin(?-?)]

 cos sin?=0.5[sin(?+?)-sin(?-?)]

 cos cos?=0.5[cos(?+?)+cos(?-?)]

 sin sin?=-0.5[cos(?+?)-cos(?-?)]

  和差化积公式推导

 附推导:

 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

 所以,sina*cosb=(sin(a+b)+sin(a-b))/2

 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

 这样,我们就得到了积化和差的四个公式:

 sina*cosb=(sin(a+b)+sin(a-b))/2

 cosa*sinb=(sin(a+b)-sin(a-b))/2

 cosa*cosb=(cos(a+b)+cos(a-b))/2

 sina*sinb=-(cos(a+b)-cos(a-b))/2

 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.

 我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

 把a,b分别用x,y表示就可以得到和差化积的四个公式:

 sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

 sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

 cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

 cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

求高中三角函数数学题

正余弦定理是三角函数中有关三角知识的继续与发展,进一步揭示了任意三角形的边与角之间的关系,其边角转换功能在求解三角形及判断三角形形状时有着重要应用. 在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题.

使用情景:已知边与三角函数之间的等式关系

解题步骤:

第一步 运用正弦定理或余弦定理将已知等式全部转化为都是角或都是边的等式;

第二步 利用三角函数的图像及其性质或者边与边之间的等式关系得出所求的三角形的形状;

第三步 得出结论.

例在 中,已知 ,那么 一定是( )

A.等腰三角形

B.直角三角形

C.等腰三角形或直角三角形

D.等腰直角三角形

答案A

解析

因为 ,

由正弦定理得 ,

即 ,

所以 ,所以三角形为等腰三角形,

故选A.

总结解决这类问题的方法通常有两种思路:

一是将等式两边的边运用正弦定理全部转化为正弦角的形式,使得式子只有三角形式;

二是运用余弦定理将右边的 化为边的形式,使得等式只有边与边之间的等式关系.

高中数学正余弦定理中难题,求提供解答过程!

三角形中的三角函数式

三角形中的三角函数关系是历年高考的重点内容之一,本节主要帮助考生深刻理解正、余弦定理,掌握解斜三角形的方法和技巧.

●难点磁场

(★★★★★)已知△ABC的三个内角A、B、C满足A+C=2B. ,求cos 的值.

●案例探究

[例1]在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北30°东,俯角为60°的B处,到11时10分又测得该船在岛北60°西、俯角为30°的C处。

(1)求船的航行速度是每小时多少千米;

(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?

命题意图:本题主要考查三角形基础知识,以及学生的识图能力和综合运用三角知识解决实际问题的能力.

知识依托:主要利用三角形的三角关系,关键找准方位角,合理利用边角关系.

错解分析:考生对方位角识别不准,计算易出错.

技巧与方法:主要依据三角形中的边角关系并且运用正弦定理来解决问题.

解:(1)在Rt△PAB中,∠APB=60° PA=1,∴AB= (千米)

在Rt△PAC中,∠APC=30°,∴AC= (千米)

在△ACB中,∠CAB=30°+60°=90°

(2)∠DAC=90°-60°=30°

sinDCA=sin(180°-∠ACB)=sinACB=

sinCDA=sin(∠ACB-30°)=sinACB?cos30°-cosACB?sin30° .

在△ACD中,据正弦定理得 ,

答:此时船距岛A为 千米.

[例2]已知△ABC的三内角A、B、C满足A+C=2B,设x=cos ,f(x)=cosB( ).

(1)试求函数f(x)的解析式及其定义域;

(2)判断其单调性,并加以证明;

(3)求这个函数的值域.

命题意图:本题主要考查考生运用三角知识解决综合问题的能力,并且考查考生对基础知识的灵活运用的程度和考生的运算能力,属★★★★级题目.

知识依托:主要依据三角函数的有关公式和性质以及函数的有关性质去解决问题.

错解分析:考生对三角函数中有关公式的灵活运用是难点,并且不易想到运用函数的单调性去求函数的值域问题.

技巧与方法:本题的关键是运用三角函数的有关公式求出f(x)的解析式,公式主要是和差化积和积化和差公式.在求定义域时要注意| |的范围.

解:(1)∵A+C=2B,∴B=60°,A+C=120°

∵0°≤| |<60°,∴x=cos ∈( ,1

又4x2-3≠0,∴x≠ ,∴定义域为( , )∪( ,1].

(2)设x1<x2,∴f(x2)-f(x1)=

= ,若x1,x2∈( ),则4x12-3<0,4x22-3<0,4x1x2+3>0,x1-x2<0,∴f(x2)-f(x1)<0

即f(x2)<f(x1),若x1,x2∈( ,1],则4x12-3>0.

4x22-3>0,4x1x2+3>0,x1-x2<0,∴f(x2)-f(x1)<0.

即f(x2)<f(x1),∴f(x)在( , )和( ,1 上都是减函数.

(3)由(2)知,f(x)<f( )=- 或f(x)≥f(1)=2.

故f(x)的值域为(-∞,- )∪[2,+∞ .

●锦囊妙计

本难点所涉及的问题以及解决的方法主要有:

(1)运用方程观点结合恒等变形方法巧解三角形;

(2)熟练地进行边角和已知关系式的等价转化;

(3)能熟练运用三角形基础知识,正、余弦定理及面积公式与三角函数公式配合,通过等价转化或构建方程解答三角形的综合问题,注意隐含条件的挖掘.

●歼灭难点训练

一、选择题

1.(★★★★★)给出四个命题:(1)若sin2A=sin2B,则△ABC为等腰三角形;(2)若sinA=cosB,则△ABC为直角三角形;(3)若sin2A+sin2B+sin2C<2,则△ABC为钝角三角形;(4)若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC为正三角形.以上正确命题的个数是( )

A.1 B.2 C.3 D.4

二、填空题

2.(★★★★)在△ABC中,已知A、B、C成等差数列,则 的值为__________.

3.(★★★★)在△ABC中,A为最小角,C为最大角,已知cos(2A+C)=- ,sinB= ,则cos2(B+C)=__________.

三、解答题

4.(★★★★)已知圆内接四边形ABCD的边长分别为AB=2,BC=6,CD=DA=4,求四边形ABCD的面积.

5.(★★★★★)如右图,在半径为R的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r的平方成反比,即I=k? ,其中 k是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h,才能使桌子边缘处最亮?

6.(★★★★)在△ABC中,a、b、c分别为角A、B、C的对边, .

(1)求角A的度数;

(2)若a= ,b+c=3,求b和c的值.

7.(★★★★)在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且a、b、3c成等比数列,又∠A-∠C= ,试求∠A、∠B、∠C的值.

8.(★★★★★)在正三角形ABC的边AB、AC上分别取D、E两点,使沿线段DE折叠三角形时,顶点A正好落在边BC上,在这种情况下,若要使AD最小,求AD∶AB的值.

参考答案

难点磁场

解法一:由题设条件知B=60°,A+C=120°.

设α= ,则A-C=2α,可得A=60°+α,C=60°-α,

依题设条件有

整理得4 cos2α+2cosα-3 =0(M)

(2cosα- )(2 cosα+3)=0,∵2 cosα+3≠0,

∴2cosα- =0.从而得cos .

解法二:由题设条件知B=60°,A+C=120°

①,把①式化为cosA+cosC=-2 cosAcosC ②,

利用和差化积及积化和差公式,②式可化为

③,

将cos =cos60°= ,cos(A+C)=- 代入③式得:

将cos(A-C)=2cos2( )-1代入 ④:4 cos2( )+2cos -3 =0,(*),

歼灭难点训练

一、1.解析:其中(3)(4)正确.

答案: B

二、2.解析:∵A+B+C=π,A+C=2B,

答案:

3.解析:∵A为最小角∴2A+C=A+A+C<A+B+C=180°.

∵cos(2A+C)=- ,∴sin(2A+C)= .

∵C为最大角,∴B为锐角,又sinB= .故cosB= .

即sin(A+C)= ,cos(A+C)=- .

∵cos(B+C)=-cosA=-cos[(2A+C)-(A+C)]=- ,

∴cos2(B+C)=2cos2(B+C)-1= .

答案:

三、4.解:如图:连结BD,则有四边形ABCD的面积:

S=S△ABD+S△CDB= ?AB?ADsinA+ ?BC?CD?sinC

∵A+C=180°,∴sinA=sinC

故S= (AB?AD+BC?CD)sinA= (2×4+6×4)sinA=16sinA

由余弦定理,在△ABD中,BD2=AB2+AD2-2AB?AD?cosA=20-16cosA

在△CDB中,BD2=CB2+CD2-2CB?CD?cosC=52-48cosC

∴20-16cosA=52-48cosC,∵cosC=-cosA,

∴64cosA=-32,cosA=- ,又0°<A<180°,∴A=120°故S=16sin120°=8 .

5.解:R=rcosθ,由此得: ,

7.解:由a、b、3c成等比数列,得:b2=3ac

∴sin2B=3sinC?sinA=3(- )[cos(A+C)-cos(A-C)]

∵B=π-(A+C).∴sin2(A+C)=- [cos(A+C)-cos ]

即1-cos2(A+C)=- cos(A+C),解得cos(A+C)=- .

∵0<A+C<π,∴A+C= π.又A-C= ∴A= π,B= ,C= .

8.解:按题意,设折叠后A点落在边BC上改称P点,显然A、P两点关于折线DE对称,又设∠BAP=θ,∴∠DPA=θ,∠BDP=2θ,再设AB=a,AD=x,∴DP=x.在△ABC中,

∠APB=180°-∠ABP-∠BAP=120°-θ,?

由正弦定理知: .∴BP=

在△PBD中, ,

∵0°≤θ≤60°,∴60°≤60°+2θ≤180°,∴当60°+2θ=90°,即θ=15°时,

sin(60°+2θ)=1,此时x取得最小值 a,即AD最小,∴AD∶DB=2 -3.

数学正弦定理余弦定理公式

郭敦荣回答:

在△ABC中,

a?-a-2b-c=0,

a+2b-2c+3=0,

二式相加得,a?-3c+3=0,c=a?/3+1,

b =(a?-a-c)/2=(2a?/3-1-a)/2=(1/3)a?-a/2-1/2,

设a=1,则c=4/3,b=1/3-1/2-1/2=-2/3,

∴b=-2/3 (a),

但b>0,矛盾。所以,本题无解。

不知什么地方出了问题,很可能是两式中的正负号上有问题,请检查。

数学正弦定理公式:a/sinA=b/sinB=c/sinC=2R;余弦定理公式:cos A=(b?+c?-a?)/2bc。

正余弦定理指正弦定理和余弦定理,是揭示三角形边角关系的重要定理,直接运用它可解决三角形的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

一、正弦定理推论公式

1、a=2RsinA;b=2RsinB;c=2RsinC。

2、a:b=sinA:sinB;a:c=sinA:sinC;b:c=sinB:sinC;a:b:c=sinA:sinB:sinC。

二、余弦定理推论公式

1、cosA=(b^2+c^2-a^2)/2bc;2、cosB=(a^2+c^2-b^2)/2ac;3、cosC=(a^2+b^2-c^2)/2ab。

三、正弦定理的运用:

1、已知三角形的两角与一边,解三角形。

2、已知三角形的两边和其中一边所对的角,解三角形。

3、运用a:b:c=sinA:sinB:sinC解决角之间的转换关系。

四、余弦定理的运用:

1、当已知三角形的两边及其夹角,可由余弦定理得出已知角的对边。

2、当已知三角形的三边,可以由余弦定理得到三角形的三个内角。

3、当已知三角形的三边,可以由余弦定理得到三角形的面积。

文章标签: # cos # sin # 公式