您现在的位置是: 首页 > 教育改革 教育改革
高考导数评分标准_高考导数偏分
tamoadmin 2024-05-27 人已围观
简介1.新高考数学导数难度下降原因2.高中导数的题型及解题技巧3.高考数学导数大题怎么确保思路正确4.2022高考数学导数公式大全 数学公式总结5.数学高考 用导数求单调性 分类讨论 如何才可以把一个函数知道他导函数那一部分大于0 那一部分小于0 根据什6.高考怎样轻松应对导数7.高考如何考导数大题高考数学导数解题技巧?1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。2.在解答题的考查中,
1.新高考数学导数难度下降原因
2.高中导数的题型及解题技巧
3.高考数学导数大题怎么确保思路正确
4.2022高考数学导数公式大全 数学公式总结
5.数学高考 用导数求单调性 分类讨论 如何才可以把一个函数知道他导函数那一部分大于0 那一部分小于0 根据什
6.高考怎样轻松应对导数
7.高考如何考导数大题
高考数学导数解题技巧?
1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。
2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。
3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。
4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。
5.涌现了一些函数新题型。
6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。
7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。
8.求极值, 函数单调性,应用题,与三角函数或向量结合。
高考数学导数中档题是拿分点?
1.单调性问题
研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。
2.极值问题
求函数y=f(x)的极值时,要特别注意f'(x0)=0只是函数在x=x0有极值的必要条件,只有当f'(x0)=0且在? _? 0 时,f'(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时, 在 x=x0处也可能有极值,例如函数 f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。
还要注意的是, 函数在x=x0有极值,必须是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f'(x)=0所求的驻点是否在函数的定义域内。
3.切线问题
曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展? 理性思维? 。关于切线方程问题有下列几点要注意:
(1)求切线方程时,要注意直线在某点相切还是切线过某点,因此在求切线方程时,除明确指出某点是切点之外,一定要设出切点,再求切线方程;
(2) 和曲线只有一个公共点的直线不一定是切线,反之,切线不一定和曲线只有一个公共点,因此,切线不一定在曲线的同侧,也可能有的切线穿过曲线;
(3) 两条曲线的公切线有两种可能,一种是有公共切点,这类公切线的特点是在切点的函数值相等,导数值相等;另一种是没有公共切点,这类公切线的特点是分别求出两条曲线的各自切线,这两条切线重合。
新高考数学导数难度下降原因
△
还是▽?
后者为梯度算符
或散度算符:
前者一般表示拉普拉斯算符:
具体的,搜索“梯度算符” “散度算符” “拉普拉斯算子”~
高中导数的题型及解题技巧
难度大。导数的几何意义理解不完整,极值、极值点、取得极值时的点概念混淆,取得极值的条件不清楚。常规而言,一套高考数学题中的曲锥曲线和导数题是最难的,导数,也叫导函数值。又名微商,是微积分中的重要基础概念。
高考数学导数大题怎么确保思路正确
高中导数的题型及解题技巧如下:
一、利用导数研究切线问题
1、解题思路:关键是要有切点横坐标,以及利用三句话来列式。具体来说,题目必须出现切点横坐标,如果没有切点坐标,必须自设切点坐标。然后,利用三句话来列式:切点在切线上;切点在曲线上;斜率等于导数。用这三句话,百分之百可以解答全部切线问题。
2、另外,二次函数的切线问题,则可不需要用这三句话来解答,可以直接联立切线和曲线的方程组,令判别式等于0。
二、利用导数研究函数的单调性
解题思路:求定义域——求导——讨论参数,判断单调性。首先,务必要先求定义域,以免单调区间落在定义域之外;其次,求导务必要仔细,要检查,否则求导错误,后面全军覆没;最后,带参数的函数,务必要谈论参数,根据参数来判断单调性和求单调区间。
三、利用导数研究函数的极值和最值
解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值前面跟(2)的解题思路一样,后面衔接下去,就是求极值和求最值了。要想求极值,必须先判断单调性。而求最值,则需要依据单调性、极值和端点值来判断。
四、利用导数研究不等式
1、解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值——解不等式。从这个解题思路可以看得出,导数不等式的本质是最值问题。因此,导数不等式,就是必须先求最值。
2、利用导数不等式,绝对是超级难点,也是高考导数大题的第2小问常考的考点。大家要紧紧抓住“导数不等式就是最值问题”这句话,循序渐进地思考解题,多训练,必能完成此类题的攻克和解题。
五、利用导数研究方程
解题思路:第一步,提取参数到一边,设另一边为函数h(x);第二步,对函数h(x)求导,判断单调性,求极值,并作图;第三步,观察比较直线与曲线h(x)的交点个数。
2022高考数学导数公式大全 数学公式总结
高中数学合集百度网盘下载
链接:提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
数学高考 用导数求单调性 分类讨论 如何才可以把一个函数知道他导函数那一部分大于0 那一部分小于0 根据什
牢记公式才能做题有思路,高考数学在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
常用导数公式
1、y=c(c为常数)y'=0
2、y=x^ny'=nx^(n-1)
3、y=a^xy'=a^xlna
4、y=e^xy'=e^x
5、y=logaxy'=logae/x
6、y=lnxy'=1/x
7、y=sinxy'=cosx
8、y=cosxy'=-sinx
9、y=tanxy'=1/cos^2x
10、y=cotxy'=-1/sin^2x
11、y=arcsinxy'=1/√1-x^2
12、y=arccosxy'=-1/√1-x^2
13、y=arctanxy'=1/1+x^2
14、y=arccotxy'=-1/1+x^2
高考考试答题技巧答题顺序:从卷首依次开始
一般地讲,全卷大致是先易后难的排列,所以,正确的做法是从卷首开始依次做题,先易后难,最后攻坚。有的考生愿意从卷末难题开始做,他们认为自己前面的题没有问题,好坏成败就看卷末的难题做得怎么样,开始时头脑最清醒,先做最难的题成功率高、效果好,想以攻坚胜利保证全局的胜利。这种想法看似有理,实际是错误的。
一般卷末的题比较难,除了个别水平特别高的学生,都没有做好该题的把握。很可能花了不少时间,也没有把这个题满意地做完。你这时的思绪多半已经被搅得很乱,又由于花了不少时间,别的题一点没有做,难免心里发慌,以慌乱之心做前面的题,效果也会大打折扣。
但也不是坚决地依次做题,一份高考试卷,虽然大致是先易后难,但试卷前部特别是中间出现难题也是常见的,执着程度适当,才能绕过难题,先做好有保证的题,才能尽量多得分。
高考怎样轻松应对导数
高中数学合集百度网盘下载
链接:提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
高考如何考导数大题
导数是高中数学重点内容之一,同学们在复习时应注意导数的工具性作用,扣紧这一重点,切实掌握导数在解决导数在解决函数问题时的应用方法,学会用数学思想和方法寻求规律找出解决策略。 下面是对高考中考察导数和函数知识的总结。 1.考察函数定义域 2.考察函数解析式 3.考察反函数 4.考察函数的奇偶性,单调性 5.考察函数图像及性质 6.考察导数的几何意义 7.考察导数研究函数的单调性和极值 寻找其中的重点并且紧扣这些知识,认真准备应用试题,重视函数的数学模型问题。
此外多练导数题,多总结,到最后会有收获的。
高考数学导数大题出题特点及解法技巧:
1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x之间的区别。
2.若题目考察的是曲线的切线,分为两种情况:
(1)关于曲线在某一点的切线,求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.
(2)关于两曲线的公切线,若一直线同时与两曲线相切,则称该直线为两曲线的公切线.
高考导数有什么题型
①应用导数求函数的单调区间,或判定函数的单调性;
②应用导数求函数的极值与最值; ③应用导数解决有关不等式问题。
导数的解题技巧和思路
①确定函数f(x)的定义域(最容易忽略的,请牢记);
②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间;
③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。 高考数学导数主流题型及其方法 (1)求函数中某参数的值或给定参数的值求导数或切线
一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。
虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:
先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。