您现在的位置是: 首页 > 教育资讯 教育资讯
2017高考解析几何大题_2017高考数学几何大题
tamoadmin 2024-07-20 人已围观
简介1.2017年全国2卷历史难度2.平面几何用尺规作图有哪三大不能3.2017年高考全国二卷数学难吗?对于全国二卷地区的考生来说。4.2017年高考数学试卷具体有哪些特点?5.2017年西藏高考数学基础练习(六)6.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如7.2017年高考数学平面向量必考知识点8.2017高中数学面积体积公式该年份数二难度偏高。从整体难度来看,2017年高考数学卷二的难
1.2017年全国2卷历史难度
2.平面几何用尺规作图有哪三大不能
3.2017年高考全国二卷数学难吗?对于全国二卷地区的考生来说。
4.2017年高考数学试卷具体有哪些特点?
5.2017年西藏高考数学基础练习(六)
6.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如
7.2017年高考数学平面向量必考知识点
8.2017高中数学面积体积公式
该年份数二难度偏高。
从整体难度来看,2017年高考数学卷二的难度相对较高。试卷涵盖了数学的各个领域,如代数、几何、概率与统计等,题目难度层次分明,涉及面广泛。而且试卷中的难题数量相对较多,对学生的知识储备和解题能力提出了更高的要求。
此外,与往年相比,2017年的试卷增加了一些新颖的题型,如填空题和解答题。这些题型对学生的思维能力和解决实际问题的能力进行考察,相对较难。
2017年全国2卷历史难度
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是我为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。
高中数学知识点:等差数列公式
等差数列公式an=a1+(n-1)d
a1为首项,an为第n项的通项公式,d为公差
前n项和公式为:Sn=na1+n(n-1)d/2
Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n.m.p.q均为正整数
解析:第n项的值an=首项+(项数-1)?公差
前n项的和Sn=首项?n+项数(项数-1)公差/2
公差d=(an-a1)?(n-1)
项数=(末项-首项)?公差+1
数列为奇数项时,前n项的和=中间项?项数
数列为偶数项,求首尾项相加,用它的和除以2
等差中项公式2an+1=an+an+2其中{an}是等差数列
通项公式:公差?项数+首项-公差
高中数学知识点:等差数列求和公式
若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:
S=(a1+an)n?2
即(首项+末项)?项数?2
前n项和公式
注意:n是正整数(相当于n个等差中项之和)
等差数列前N项求和,实际就是梯形公式的妙用:
上底为:a1首项,下底为a1+(n-1)d,高为n。
即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。
高中数学知识点:推理过程
设首项为 , 末项为 , 项数为 , 公差为 , 前 项和为 , 则有:
当d?0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。
注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。
求和推导
证明:由题意得:
Sn=a1+a2+a3+。。。+an①
Sn=an+a(n-1)+a(n-2)+。。。+a1②
①+②得:
2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)
Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2
Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)
基本公式
公式 Sn=(a1+an)n/2
等差数列求和公式
Sn=na1+n(n-1)d/2; (d为公差)
Sn=An2+Bn; A=d/2,B=a1-(d/2)
和为 Sn
首项 a1
末项 an
公差d
项数n
表示方法
等差数列基本公式:
末项=首项+(项数-1)?公差
项数=(末项-首项)?公差+1
首项=末项-(项数-1)?公差
和=(首项+末项)?项数?2
差:首项+项数?(项数-1)?公差?2
说明
末项:最后一位数
首项:第一位数
项数:一共有几位数
和:求一共数的总和
本段通项公式
首项=2?和?项数-末项
末项=2?和?项数-首项
末项=首项+(项数-1)?公差:a1+(n-1)d
项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1
公差= d=(an-a1)/n-1
如:1+3+5+7+?99 公差就是3-1
将a1推广到am,则为:
d=(an-am)/n-m
基本性质
若 m、n、p、q?N
①若m+n=p+q,则am+an=ap+aq
②若m+n=2q,则am+an=2aq(等差中项)
平面几何用尺规作图有哪三大不能
2017年文科全国二卷的考生们,你们觉得今年的考试怎么样?各科难度
120路过。
。嗯其实也算中规中举吧,数学前面一马平川过来了到了圆锥曲线直接卡住。
。后面两个大题+选修就只答上了第一个问,然后前面几何第二个问算数算错了。
整体来说得140+高分不容易,130是很容易的,本人也是属于基础型选手,相比于去年2卷感觉难了一丢丢吧(主要还是后面的大题太卡人了),现在复读了,重新回顾了一下高考卷(之前从来不学导数第二个问的因为怕浪费时间,现在复读了专心攻克一下),发现其实不是很难,只是不知道解题方法(就如导数第二个问二次求导+洛必达法则就可以轻松解决了),整体来说要比模拟考拿分容易一些(模拟考12题和16题是压轴题稍微难一些 17年二卷选择填空没有压轴题),我之前模拟考一般都是100-110左右,这就是数学吧,现在趋势感觉数学不会偏难出太多题了都是中规的多一些。文综是我弱项(尤其是地理政治,基本不咋背),高考170+,选择对的比较多,历史二卷答得比较好(没有什么难题,论述题写钟表也很好写),英语超级弱项,只考了90+,就不多评述了,现在英语整体110+,感觉还是背单词的功劳,语文也是大弱项90+,作文比较恶心立意多角度,好找但是不好写,不如任务驱动类好写 希望楼主给个好评,一字一字码出来的。
2017年高考全国二卷数学难吗?对于全国二卷地区的考生来说
LZ您好
全国卷2本来就不是难卷,且2017年的全国卷2的难度"歪了"
歪的地方是题目不算新,计算量挺大(第18题概率论与数理统计的大题,并且位置靠前,后面大题不难但是做完这题心态容易崩)
所以有一定计算量训练的学生这张卷应该很轻松
基础选择填空完全在比简单题用时。
可能拉分的题:
选择题最后一题建立坐标系进行向量计算,立刻天就蓝了。结果还是考计算量!
填空倒数第二题是裂项
填空最后一题画完图结果还是变成计算题。
三角大题是基础.
圆锥曲线和立体几何大题也是思路送分,看你认不认真计算.
压轴导数题算不得难但是(1)须有极限思想;(2)是分类讨论,存在唯一极大值点被你证明好了这题也结束了.
坐标系与参数方程选修题有积化和差的技巧。不等式的那个选修题也是套路,但是是证明题,所以难度比坐标系题要难。
所以这张卷子,真心难度不大,问做题认真不认真,计算量稍微偏大而已.
今年的高考全国二卷难度较2017年相比如何,重本线较2017年相比会我认为难度都没多大变化,因为全国二卷都适中,题型也差不多。今年的全国二卷语文比2017年语文阅读量加大,数学则没太大变化主要以中档题为主,英语,文综,理综和2017比没多大变化。都是考虑中等学生,难度没多大改变。我认为今年的重本线应该上升,因为今年考生比2017年多,而且重本线近几年都有上升趋势。
2017海南卷与全国二卷的区别1、2016年高考,广东、河北、河南、山西、江西、湖南、湖北、福建、安徽9省将使用 "全国卷 新课标卷 乙卷
2016年普通高考全国卷将命制甲、乙、丙三类试卷(海南卷除外,仍由国家考试中心为海南省单独命制)。
在2015年甲卷(全国II卷)、乙卷(全国I卷)的基础上,新增丙卷。
丙卷与甲卷(全国II卷)在试卷结构上相同、难度相当。
2016年,重庆和四川、广西、陕西考生将使用丙卷。其他省份还保持原来的甲卷(全国II卷)与乙卷(全国I卷)使用情况不变。
2、2016高考使用全国甲卷省份:贵州 甘肃 青海 *** 黑龙江 吉林 宁夏 内蒙古 新疆 云南 辽宁
2016年高考使用全国乙卷省份:河南 河北 山西 湖北 江西 湖南 广东 福建、安徽 、山东(英语、综合)
2018年高考增加使用全国乙卷省份:山东(语文,数学)
2016年高考使用全国丙卷省份:重庆、四川、广西、陕西。
单独命题 海南(语文、数学、英语使用全国甲卷,政治、历史、地理、化学、生物为考试中心命题。)
2018年2016年全国二卷试题难度比较(全部科目)要看你所在的省份,把全国各省份情况列举如下北京市:所有科目全部自主命题天津市:所有科目全部自主命题上海市:所有科目全部自主命题山东省:自主命题(语、数。
PS:语文数学在2018将用新课标Ⅰ卷)+新课标Ⅰ卷(综合(2016)、英)广东省:英语听说考试由广东省自主命题(其余部分和其他科目均用新课标Ⅰ卷) 江苏省:所有科目全部自主命题浙江省:所有科目全部自主命题,英语听力使用全国英语等级考试二级听力;2017年起英语使用全国卷 ,2019年起所有科目使用全国II卷四川省:自主命题(数、英、理综)+新课标Ⅲ卷(语、文综),2017年起全部使用全国III卷福建省:2016年起全部使用全国I卷,2019年起使用全国II卷湖北省:2016年起全部使用全国I卷湖南省:2016年起全部使用全国I卷海南省:自主命题(政、史、地、理、化、生)+新课标Ⅱ卷(语、数、英)。
2017年高考全国二卷数学难吗?对于全国二卷地区的考生来说。
尺规作图不能问题就是不可能用尺规作图完成的作图问题.其中最著名的是被称为几何三大问题的古典难题:
■三等分角问题:三等分一个任意角;
■倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;
■化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 以上三个问题在2400年前的古希腊已提出这些问题,但在欧几里得几何学的限制下,以上三个问题都不可能解决的.直至1837年,法国数学家万芝尔才首先证明“三等分角”和“倍立方”为尺规作图不能问题.而后在1882年德国数学家林德曼证明π是超越数后,“化圆为方”也被证明为尺规作图不能问题.
2017年高考数学试卷具体有哪些特点?
LZ您好
全国卷2本来就不是难卷,且2017年的全国卷2的难度"歪了"
歪的地方是题目不算新,计算量挺大(第18题概率论与数理统计的大题,并且位置靠前,后面大题不难但是做完这题心态容易崩)
所以有一定计算量训练的学生这张卷应该很轻松
基础选择填空完全在比简单题用时...
可能拉分的题:
选择题最后一题建立坐标系进行向量计算,立刻天就蓝了...结果还是考计算量!
填空倒数第二题是裂项
填空最后一题画完图结果还是变成计算题...
三角大题是基础.
圆锥曲线和立体几何大题也是思路送分,看你认不认真计算.
压轴导数题算不得难但是(1)须有极限思想;(2)是分类讨论,存在唯一极大值点被你证明好了这题也结束了.
坐标系与参数方程选修题有积化和差的技巧...不等式的那个选修题也是套路,但是是证明题,所以难度比坐标系题要难...
所以这张卷子,真心难度不大,问做题认真不认真,计算量稍微偏大而已.
2017年西藏高考数学基础练习(六)
高中数学合集百度网盘下载
链接:s://pan.baidu/s/1znmI8mJTas01m1m03zCRfQ
?pwd=1234提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、、各大名师网校合集。
把几个数用大括号括起来,相邻两个数之间用逗号隔开,如
一、选择题
1.平行四边形ABCD的一条对角线固定在A(3,-1),C(2,-3)两点,点D在直线3x-y+1=0上移动,则点B的轨迹方程为( )
A.3x-y-20=0 B.3x-y+10=0
C.3x-y-9=0 D.3x-y-12=0
答案:A 解题思路:设AC的中点为O,即.设B(x,y)关于点O的对称点为(x0,y0),即D(x0,y0),则由3x0-y0+1=0,得3x-y-20=0.
2.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为( )
A.1 B.2
C. -2D.3
答案:C 解题思路:当该点是过圆心向直线引的垂线的交点时,切线长最小.因圆心(3,0)到直线的距离为d==2,所以切线长的最小值是l==.
3.直线y=x+b与曲线x=有且只有一个交点,则b的取值范围是( )
A.{b||b|=}
B.{b|-1
C.{b|-1≤b<1}
D.非以上答案
答案:
B 解题思路:在同一坐标系中,画出y=x+b与曲线x=(就是x2+y2=1,x≥0)的图象,如图所示,相切时b=-,其他位置符合条件时需-1
4.若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆所作的切线长的最小值是( )
A.2 B.3
C.4 D.6
答案:C 解题思路:圆的标准方程为(x+1)2+(y-2)2=2,所以圆心为(-1,2),半径为.因为圆关于直线2ax+by+6=0对称,所以圆心在直线2ax+by+6=0上,所以-2a+2b+6=0,即b=a-3,点(a,b)到圆心的距离为
d==
==.
所以当a=2时,d有最小值=3,此时切线长最小,为==4,故选C.
5.已知动点P到两定点A,B的距离和为8,且|AB|=4,线段AB的中点为O,过点O的所有直线与点P的轨迹相交而形成的线段中,长度为整数的有( )
A.5条 B.6条
C.7条 D.8条
答案:D 命题立意:本题考查椭圆的定义与性质,难度中等.
解题思路:依题意,动点P的轨迹是以A,B为焦点,长轴长是8,短轴长是2=4的椭圆.注意到经过该椭圆的中心O的最短弦长等于4,最长弦长是8,因此过点O的所有直线与点P的轨迹相交而形成的线段中,长度可以为整数4,5,6,7,8,其中长度为4,8的各一条,长度为5,6,7的各有两条,因此满足题意的弦共有8条,故选D.
6.设m,nR,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是( )
A.[1-,1+]
B.(-∞,1-][1+,+∞)
C.[2-2,2+2]
D.(-∞,2-2][2+2,+∞)
答案:D 解题思路: 直线与圆相切,
=1,
|m+n|=,
即mn=m+n+1,
设m+n=t,则mn≤2=,
t+1≤, t2-4t-4≥0,
解得:t≤2-2或t≥2+2.
7.在平面直角坐标系xOy中,设A,B,C是圆x2+y2=1上相异三点,若存在正实数λ,μ,使得=λ+μ,则λ2+(μ-3)2的取值范围是( )
A.[0,+∞) B.(2,+∞)
C.(2,8) D.(8,+∞)
答案:B 解题思路:依题意B,O,C三点不可能在同一直线上, ·=|cos BOC=cos BOC∈(-1,1),又由=λ+μ,得λ=-μ,于是λ2=1+μ2-2μ·,记f(μ)=λ2+(μ-3)2.则f(μ)=1+μ2-2μ·+(μ-3)2=2μ2-6μ-2μ·+10,可知f(μ)>2μ2-8μ+10=2(μ-2)2+2≥2,且f(μ)<2μ2-4μ+10=2(μ-1)2+8无值,故λ2+(μ-3)2的取值范围为(2,+∞).
8.已知圆C:x2+y2=1,点P(x0,y0)在直线x-y-2=0上,O为坐标原点,若圆C上存在一点Q,使得OPQ=30°,则x0的取值范围是( )
A.[-1,1] B.[0,1]
C.[-2,2] D.[0,2]
答案:D 解析:由题知,在OPQ中,=,即=, |OP|≤2,又P(x0,x0-2),则x+(x0-2)2≤4,解得x0[0,2],故选D.
9.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分成两部分,使得这两部分的面积之差,则该直线的方程为( )
A.x+y-2=0 B.y-1=0
C.x-y=0 D.x+3y-4=0
答案:A 命题立意:本题考查直线、线性规划与圆的综合运用及数形结合思想,难度中等.
解题思路:要使直线将圆形区域分成两部分的面积之差,必须使过点P的圆的弦长达到最小,所以需该直线与直线OP垂直.又已知点P(1,1),则kOP=1,故所求直线的斜率为-1.又所求直线过点P(1,1),故由点斜式得,所求直线的方程为y-1=-(x-1),即x+y-2=0.
10.直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是( )
A. B.
C.[-, ] D.
答案:B 命题立意:本题考查直线与圆的位置关系,难度中等.
解题思路:在由弦心距d、半径r和半弦长|MN|构成的直角三角形中,由勾股定理,得|MN|=≥,得4-d2≥3,解得d2≤1,又d==,解得k2≤,所以-≤k≤.
二、填空题
11.已知直线l:y=-(x-1)与圆O:x2+y2=1在第一象限内交于点M,且l与y轴交于点A,则MOA的面积等于________.
答案: 命题立意:本题考查直线与圆的位置关系的应用,难度较小.
解题思路:联立直线与圆的方程可得xM=,故SMOA=×|OA|×xM=××=.
12.在ABC中,角A,B,C的对边分别为a,b,c.若a2+b2=c2,则直线ax-by+c=0被圆x2+y2=9所截得的弦长为________.
答案:2 命题立意:本题考查直线与圆位置关系的应用,求解弦长一般用几何法求解,难度较小.
解题思路:圆心到直线的距离d===,故直线被圆截得的弦长为2=2=2.
13.已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足APO=BPO,其中O为原点,则点P的轨迹方程是________.
答案:(x-2)2+y2=4(y≠0) 命题立意:本题考查角平分线的性质及直接法求轨迹方程,难度中等.
解题思路:因为A(-2,0),B(1,0)两点,动点P不在x轴上,且满足APO=BPO,故点P在角APB的角平分线上,则利用PAPB=AOOB=21,设点P(x,y),则利用关系式可知=2化简可得(x-2)2+y2=4(y≠0).
14.若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为2,则m的倾斜角可以是
15° 30° 45° 60° 75°
其中正确答案的序号是________.(写出所有正确答案的序号)
答案: 解题思路:设直线m与l1,l2分别交于A,B两点,
过A作ACl2于C,则|AC|==.
又|AB|=2,ABC=30°.
又直线l1的倾斜角为45°,
直线m的倾斜角为45°+30°=75°或45°-30°=15°.
B组
一、选择题
1.已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos AFB=( )
A. B.
C.- D.-
答案:D 解题思路:联立消去y得x2-5x+4=0,解得x=1或x=4.
不妨设点A在x轴下方,所以A(1,-2),B(4,4).
因为F(1,0),所以=(0,-2),=(3,4).
因此cos AFB=
==-.故选D.
2.已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为( )
A. B.
C.1 D.2
答案:D 解题思路:由题意知,抛物线的准线l为y=-1,过A作AA1l于A1,过B作BB1l于B1,设弦AB的中点为M,过M作MM1l于M1,则|MM1|=,|AB|≤|AF|+|BF|(F为抛物线的焦点),即|AF|+|BF|≥6,即|AA1|+|BB1|≥6,即2|MM1|≥6, |MM1|≥3,即M到x轴的距离d≥2,故选D.
3.设双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,A是双曲线渐近线上的一点,AF2F1F2,原点O到直线AF1的距离为|OF1|,则渐近线的斜率为( )
A.或- B.或-
C.1或-1 D.或-
答案:D 命题立意:本题考查了双曲线的几何性质的探究,体现了解析几何的数学思想方法的巧妙应用,难度中等.
解题思路:如图如示,不妨设点A是第一象限内双曲线渐近线y=x上的一点,由AF2F1F2,可得点A的坐标为,又由OBAF1且|OB|=|OF1|,即得sin OF1B=,则tan OF1B=,即可得=, =,得=,由此可得该双曲线渐近线的斜率为或-,故应选D.
4.设F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,与直线y=b相切的F2交椭圆于点E,E恰好是直线EF1与F2的切点,则椭圆的离心率为( )
A. B.
C. D.
答案:C 解题思路:由题意可得,EF1F2为直角三角形,且F1EF2=90°,
|F1F2|=2c,|EF2|=b,
由椭圆的定义知|EF1|=2a-b,
又|EF1|2+|EF2|2=|F1F2|2,
即(2a-b)2+b2=(2c)2,整理得b=a,
所以e2===,故e=,故选C.
5.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )
A. B.2 C.4 D.8
答案:C 解题思路:由题意得,设等轴双曲线的方程为-=1,又抛物线y2=16x的准线方程为x=-4,代入双曲线的方程得y2=16-a2y=±,所以2=4,解得a=2,所以双曲线的实轴长为2a=4,故选C.
6.抛物线y2=-12x的准线与双曲线-=1的两条渐近线围成的三角形的面积等于( )
A. B.3 C. D.3
答案:B 命题立意:本题主要考查抛物线与双曲线的性质等基础知识,意在考查考生的运算能力.
解题思路:依题意得,抛物线y2=-12x的准线方程是x=3,双曲线-=1的渐近线方程是y=±x,直线x=3与直线y=±x的交点坐标是(3,±),因此所求的三角形的面积等于×2×3=3,故选B.
7.若双曲线-=1与椭圆+=1(m>b>0)的离心率之积大于1,则以a,b,m为边长的三角形一定是( )
A.等腰三角形 B.直角三角形
C.锐角三角形 D.钝角三角形
答案:D 解题思路:双曲线的离心率为e1=,椭圆的离心率e2=,由题意可知e1·e2>1,即b2(m2-a2-b2)>0,所以m2-a2-b2>0,即m2>a2+b2,由余弦定理可知三角形为钝角三角形,故选D.
8. F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A,B两点.若ABF2是等边三角形,则该双曲线的离心率为( )
A.2 B. C. D.
答案:B 命题立意:本题主要考查了双曲线的定义、标准方程、几何性质以及基本量的计算等基础知识,考查了考生的推理论证能力以及运算求解能力.
解题思路:如图,由双曲线定义得,|BF1|-|BF2|=|AF2|-|AF1|=2a,因为ABF2是正三角形,所以|BF2|=|AF2|=|AB|,因此|AF1|=2a,|AF2|=4a,且F1AF2=120°,在F1AF2中,4c2=4a2+16a2+2×2a×4a×=28a2,所以e=,故选B.
9.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )
A.2 B.3
C. D.
答案:A 解题思路:设抛物线y2=4x上一动点P到直线l1和直线l2的距离分别为d1,d2,根据抛物线的定义可知直线l2:x=-1恰为抛物线的准线,抛物线的焦点为F(1,0),则d2=|PF|,由数形结合可知d1+d2=d1+|PF|取得最小值时,即为点F到l1的距离,利用点到直线的距离公式得最小值为=2,故选A.
10.已知双曲线-=1(a>0,b>0),A,B是双曲线的两个顶点,P是双曲线上的一点,且与点B在双曲线的同一支上,P关于y轴的对称点是Q.若直线AP,BQ的斜率分别是k1,k2,且k1·k2=-,则双曲线的离心率是( )
A. B. C. D.
答案:C 命题立意:本题考查双曲线方程及其离心率的求解,考查化简及变形能力,难度中等.
解题思路:设A(0,-a),B(0,a),P(x1,y1),Q(-x1,y1),故k1k2=×=,由于点P在双曲线上,故有-=1,即x=b2=,故k1k2==-=-,故有e===,故选C.
二、填空题
11.已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A(x1,y1)和B(x2,y2)两点,则(1)y1y2=________;(2)三角形ABF面积的最小值是________.
答案:(1)-8 (2)2 命题立意:本题主要考查直线与抛物线的位置关系,难度中等.
解题思路:设直线AB的方程为x-2=m(y-0),即x=my+2,联立得y2-4my-8=0.(1)由根与系数的关系知y1y2=-8.(2)三角形ABF的面积为S=|FP||y1-y2|=×1×=≥2.
知识拓展:将ABF分割后进行求解,能有效减少计算量.
12. B1,B2是椭圆短轴的两端点,O为椭圆中心,过左焦点F1作长轴的垂线交椭圆于P,若|F1B2|是|OF1|和|B1B2|的等比中项,则的值是________.
答案: 命题立意:本题考查椭圆的基本性质及等比中项的性质,难度中等.
解题思路:设椭圆方程为+=1(a>b>0),令x=-c,得y2=, |PF1|=. ==,又由|F1B2|2=|OF1|·|B1B2|,得a2=2bc. a4=4b2(a2-b2), (a2-2b2)2=0, a2=2b2, =.
13.已知抛物线C:y2=2px(p>0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B.若=,则p=________.
答案:2 解题思路:过B作BE垂直于准线l于E,
=, M为AB的中点,
|BM|=|AB|,又斜率为,
BAE=30°, |BE|=|AB|,
|BM|=|BE|, M为抛物线的焦点,
p=2.
14.
如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若B1PA2为钝角,则此椭圆的离心率的取值范围为________.
答案: 解题思路:设椭圆的方程为+=1(a>b>0),B1PA2为钝角可转化为,所夹的角为钝角,则(a,-b)·(-c,-b)0, e>或e<,又0
15.在平面直角坐标系xOy中,已知双曲线C:-=1.设过点M(0,1)的直线l与双曲线C交于A,B两点,若=2,则直线l的斜率为________.
答案:± 命题立意:本题考查直线与双曲线的位置关系,难度中等.
解题思路:联立直线与双曲线,结合根与系数的关系及向量的坐标运算求解.由题意可知,直线l与双曲线的两支相交,故设直线l:y=kx+1,k,代入双曲线方程整理得(3-4k2)x2-8kx-16=0(*).设A(x1,y1),B(x2,y2),则由=2得x1=-2x2,在(*)中,利用根与系数的关系得x1+x2=,解得x2=-,y2=,代入双曲线方程整理得16k4-16k2+3=0,解得k2=,故直线l的斜率是±.
2017年高考数学平面向量必考知识点
把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7}等等我们称之为集合。
把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{5},{2,3},{4,9,10},我们称之为集合,其中每一个数称为该集合的元素,比如{4,9,10}的元素分别为4,9,10.如果一个集合的所有元素均为有理数且满足:当有理数x是集合的一个元素时,2017?x也必是这个集合的元素,这样的集合我们又称为黄金集合。
例如{0,2017}中,2017?0=2017,2017?2017=0,对集合中的两个元素0和2017都满足黄金集合的定义、所以它就是一个黄金集合。
黄金集合是指一个特殊的数学集合,也称为黄金分割集合或黄金比例集合。它是通过黄金比例所定义的一种几何结构。
黄金比例,也称为黄金分割,是指将一段线段分成两部分,使较长部分与整段线段的比例等于较短部分与较长部分的比例。这个比例近似于1.618。
黄金集合是通过在空间中不断构造和平移黄金比例所得到的一系列正方形。具体构造方法是:从一个单位正方形开始,通过在原正方形的右侧添加一个与原正方形边长成黄金比例的新正方形。再将新正方形的右侧添加一个与新正方形边长成黄金比例的新正方形。重复这个过程无限次,就得到了黄金集合。
黄金集合具有许多美学上的特点和数学上的奇妙性质。它常被应用于建筑、艺术和设计等领域,被认为具有一种美学上的和谐感。
大括号数学意思
在数学中,大括号通常表示集合。集合是由一组互不相同的元素组成的对象。大括号内用逗号分隔元素,表示它们属于同一个集合。
2017高中数学面积体积公式
平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。以下是我为您整理的关于2017年高考数学平面向量必考知识点的相关资料,希望对您有所帮助。
高考数学必考知识点平面向量概念:
(1)向量:既有大小又有方向的量。向量不能比较大小,但向量的模可以比较大小。
(2)零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行。
(3)单位向量:模为1个单位长度的向量
(4)平行向量:方向相同或相反的非零向量
(5)相等向量:长度相等且方向相同的向量
高考数学必考知识点平面向量数量积解析
1、平面向量数量积:已知两个非零向量a、b,那么|a||b|cos?(?是a与b的夹角)叫做a与b的数量积或内积,记作a?b。零向量与任意向量的数量积为0。数量积a?b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos?的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a?b=x1?x2+y1?y2
2、平面向量数量积具有以下性质:
1、a?a=|a|2?0
2、a?b=b?a
3、k(a?b)=(ka)b=a(kb)
4、a?(b+c)=a?b+a?c
5、a?b=0<=>a?b
6、a=kb<=>a//b
7、e1?e2=|e1||e2|cos?
高考数学必考知识点平面向量加法解析
已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。
注:向量的加法满足所有的加法运算定律,如:交换律、结合律。
高考数学必考知识点平面向量减法解析
1、AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、指被减。
-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。
平面向量公式汇总
1、定点
定点公式(向量P1P=?向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 ?,使 向量P1P=?向量PP2,?叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+?OP2)(1+?);(定点向量公式)
x=(x1+?x2)/(1+?),
y=(y1+?y2)/(1+?)。(定点坐标公式)
我们把上面的式子叫做有向线段P1P2的定点公式
2、三点共线定理
若OC=?OA +?OB ,且?+?=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
[编辑本段]向量共线的重要条件
若b?0,则a//b的重要条件是存在唯一实数?,使a=?b。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
[编辑本段]向量垂直的充要条件
a?b的充要条件是 a?b=0。
a?b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.
设a=(x,y),b=(x',y')。
3、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
4、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即?共同起点,指向被减?
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
5、数乘向量
实数?和向量a的乘积是一个向量,记作?a,且∣?a∣=∣?∣?∣a∣。
当?>0时,?a与a同方向;
当?<0时,?a与a反方向;
当?=0时,?a=0,方向任意。
当a=0时,对于任意实数?,都有?a=0。
注:按定义知,如果?a=0,那么?=0或a=0。
实数?叫做向量a的系数,乘数向量?a的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣?∣>1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上伸长为原来的∣?∣倍;
当∣?∣<1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上缩短为原来的∣?∣倍。
数与向量的乘法满足下面的运算律
结合律:(?a)?b=?(a?b)=(a?b)。
向量对于数的分配律(第一分配律):(?+?)a=?a+?a.
数对于向量的分配律(第二分配律):?(a+b)=?a+?b.
数乘向量的消去律:① 如果实数?0且?a=?b,那么a=b。② 如果a?0且?a=?a,那么?=?。
6、向量的的数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0?〈a,b〉?
定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a?b=x?x'+y?y'。
向量的数量积的运算律
a?b=b?a(交换律);
(?a)?b=?(a?b)(关于数乘法的结合律);
(a+b)?c=a?c+b?c(分配律);
向量的数量积的性质
a?a=|a|的平方。
a?b 〈=〉a?b=0。
|a?b|?|a|?|b|。
7、向量的数量积与实数运算的主要不同点
(1)向量的数量积不满足结合律,即:(a?b)?c?a?(b?c);例如:(a?b)^2?a^2?b^2。
(2)向量的数量积不满足消去律,即:由 a?b=a?c (a?0),推不出 b=c。
(3)|a?b|?|a|?|b|
(4)由 |a|=|b| ,推不出 a=b或a=-b。
8、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a?b。若a、b不共线,则a?b的模是:∣a?b∣=|a|?|b|?sin〈a,b〉;a?b的方向是:垂直于a和b,且a、b和a?b按这个次序构成右手系。若a、b共线,则a?b=0。
(1)向量的向量积性质:
∣a?b∣是以a和b为边的平行四边形面积。
a?a=0。
a‖b〈=〉a?b=0。
(2)向量的向量积运算律
a?b=-b?a;
(?a)?b=?(a?b)=a?(?b);
(a+b)?c=a?c+b?c.
注:向量没有除法,?向量AB/向量CD?是没有意义的。
(3)向量的三角形不等式
∣∣a∣-∣b∣∣?∣a+b∣?∣a∣+∣b∣;
① 当且仅当a、b反向时,左边取等号;
② 当且仅当a、b同向时,右边取等号。
∣∣a∣-∣b∣∣?∣a-b∣?∣a∣+∣b∣。
① 当且仅当a、b同向时,左边取等号;
几何题复习最重要的就是要掌握好相应的高中数学面积以及体积公式,这样才能避免在高中数学几何题中丢分。接下来我为你整理了高中数学面积体积公式,一起来记一记吧。
高中数学面积体积公式1-5
1、圆柱体:
表面积:2?Rr+2?Rh
体积:?R2h (R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:?R2+?R[(h2+R2)的平方根]
体积: ?R2h/3 (r为圆锥体低圆半径,h为其高,
3、正方体
a-边长, S=6a2 ,
V=a3
4、长方体
a-长 ,b-宽 ,c-高 S=2(ab+ac+bc) V=abc
5、棱柱 、 S-底面积 h-高
V=Sh
高中数学面积体积公式6-10
6、棱锥
S-底面积 h-高
V=Sh/3
7、棱台
S1和S2-上、下底面积 h-高
V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积 ,S2-下底面积 ,S0-中截面积 h-高,
V=h(S1+S2+4S0)/6
9、圆柱
r-底半径 ,h-高 ,C?底面周长 S底?底面积 ,S侧?侧面积 ,S表?表面积
C=2?r
S底=?r2,
S侧=Ch ,
S表=Ch+2S底 ,
V=S底h=?r2h
10、空心圆柱
R-外圆半径 ,r-内圆半径 h-高
V=?h(R^2-r^2)
高中数学面积体积公式11-17
11、直圆锥 r-底半径 h-高
V=?r^2h/3
12、圆台
r-上底半径 ,R-下底半径 ,h-高 V=?h(R2+Rr+r2)/3
13、球
r-半径 d-直径
V=4/3?r^3=?d^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径
V=?h(3a2+h2)/6 =?h2(3r-h)/3
15、球台
r1和r2-球台上、下底半径 h-高
V=?h[3(r12+r22)+h2]/6
16、圆环体
R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径
V=2?2Rr2 =?2Dd2/4
17、桶状体
D-桶腹直径 d-桶底直径 h-桶高
V=?h(2D2+d2)/12 ,(母线是圆弧形,圆心是桶的中心)
V=?h(2D2+Dd+3d2/4)/15 (母线是抛物线形)
猜你喜欢:
1. 2017高考数学必考公式大全
2. 高中数学曲线公式
3. 高中数学知识点总结及公式大全
4. 2017年高考必备文科数学公式
5. 高中数学公式排列组合
6. 高中数学几何公式知识