您现在的位置是: 首页 > 教育资讯 教育资讯

高考数学文科数学题目_高考文科数学试题

tamoadmin 2024-07-20 人已围观

简介1.2011江西高考数学文科答案2.求数学大神帮忙,解答一道高考数学题,2014年全国卷新课标2高考文科18题。下面是题目3.2023高考文科数学难不难4.高考文科数学内容5.2007年新课标文科数学高考题6.2018年浙江高考数学试卷试题及答案解析(答案WORD版)7.2012广东高考文科数学第三题求向量AC。向量AC求法:“不是后面坐标减去前面坐标咩?”若不是,那什么时...高中文科数学高考范

1.2011江西高考数学文科答案

2.求数学大神帮忙,解答一道高考数学题,2014年全国卷新课标2高考文科18题。下面是题目

3.2023高考文科数学难不难

4.高考文科数学内容

5.2007年新课标文科数学高考题

6.2018年浙江高考数学试卷试题及答案解析(答案WORD版)

7.2012广东高考文科数学第三题求向量AC。向量AC求法:“不是后面坐标减去前面坐标咩?”若不是,那什么时...

高考数学文科数学题目_高考文科数学试题

高中文科数学高考范围有三角函数、向量、概率与统计、立体几何、数列、圆锥曲线、函数、导数与不等式等。

1、三角函数、向量、解三角形

(1)三角函数画图、性质、三角恒等变换、和与差公式。(2)向量的工具性。(3)正弦定理、余弦定理、解三角形背景。

2、概率与统计

(1)古典概型。(2)茎叶图。(3)直方图。(4)回归方程(2x2列联表)。(5)(理)概率分布、期望、方差、排列组合。

3、立体几何

(1)平行。(2)垂直。(3)角a:异面直线角b:(理)二面角、线面角。(4)利用三视图计算面积与体积。

4、数列

(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。(2)错位相减法、裂项求和法。(3)应用题。

5、圆锥曲线(椭圆)与圆

(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。(2)圆的方程,圆与直线的位置关系。

6、函数、导数与不等式

(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。(2)利用基本不等式、对勾函数性质。

三角函数/数列:一般全国卷第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。

概率:一般全国卷第18题会考概率题。概率题相对比较简单,也是必须得分的题,主要还是对作图和识图能力考查比较多。

解析几何:一般全国卷第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。

2011江西高考数学文科答案

2012年普通高等学校招生全国统一考试福建卷(数学文)word版

数学试题(文史类)

第I卷(选择题?共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数(2+i)2等于

A.3+4i B.5+4i C.3+2i D.5+2i

2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是

A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}

3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是

A.x=- B.x-1 C.x=5 D.x=0

4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世

A?球? B? 三棱锥? C? 正方体?D?圆柱?

5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于

A ? B C ?D ?

6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?

A?-3? B? -10? C? 0 D? -2?

7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于

A.? B?.?C.? D.1

8.函数f(x)=sin(x-?)的图像的一条对称轴是

A.x= B.x= C.x=- D.x=-?

9.设?,则f(g(π))的值为

A?1 ? B? 0 ?C? -1 ?D? π

10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为

A.-1? B.1? C. D.2

11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于

A.1006 B.2012 C.503 D.0

12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

其中正确结论的序号是

A.①③ B.①④ C.②③ D.②④

第Ⅱ卷(非选择题共90分)

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。

13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。

14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。

15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。

16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.

现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.

(Ⅰ)求an和bn;

(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本,并求这两项的值相等的概率。

18.(本题满分12分)

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;

(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

19.(本小题满分12分)

如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。

(1) 求三棱锥A-MCC1的体积;

(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。

20.?(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°

Ⅰ?试从上述五个式子中选择一个,求出这个常数?

Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。

21.(本小题满分12分)

如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。

(1) 求抛物线E的方程;

(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。

22.(本小题满分14分)

已知函数?且在?上的最大值为?,

(1)求函数f(x)的解析式;

(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。

2012年普通高等学校招生全国统一考试福建卷(数学文)word版

数学试题(文史类)

第I卷(选择题?共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数(2+i)2等于

A.3+4i B.5+4i C.3+2i D.5+2i

2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是

A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}

3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是

A.x=- B.x-1 C.x=5 D.x=0

4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世

A?球? B? 三棱锥? C? 正方体?D?圆柱?

5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于

A ? B C ?D ?

6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?

A?-3? B? -10? C? 0 D? -2?

7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于

A.? B?.?C.? D.1

8.函数f(x)=sin(x-?)的图像的一条对称轴是

A.x= B.x= C.x=- D.x=-?

9.设?,则f(g(π))的值为

A?1 ? B? 0 ?C? -1 ?D? π

10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为

A.-1? B.1? C. D.2

11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于

A.1006 B.2012 C.503 D.0

12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

其中正确结论的序号是

A.①③ B.①④ C.②③ D.②④

第Ⅱ卷(非选择题共90分)

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。

13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。

14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。

15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。

16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.

现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.

(Ⅰ)求an和bn;

(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本,并求这两项的值相等的概率。

18.(本题满分12分)

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;

(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

19.(本小题满分12分)

如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。

(1) 求三棱锥A-MCC1的体积;

(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。

20.?(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°

Ⅰ?试从上述五个式子中选择一个,求出这个常数?

Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。

21.(本小题满分12分)

如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。

(1) 求抛物线E的方程;

(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。

22.(本小题满分14分)

已知函数?且在?上的最大值为?,

(1)求函数f(x)的解析式;

(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。

求数学大神帮忙,解答一道高考数学题,2014年全国卷新课标2高考文科18题。下面是题目

1--5 : B D C A B

6-10: B DC DA

11、-6

12、 18

13、 27

14、—8

15、 x>=0

详细答案和解析

注明:部分字符和没有显示

1.若,则复数=( )

A. B. C. D.

答案:B

解析:

2.若全集,则集合等于( )

A. B. C. D.

答案:D

解析:

,,,

若,则的定义域为( )

A. B. C. D.

答案:C

解析:

4.曲线在点A(0,1)处的切线斜率为( )

A.1 B.2 C. D.

答案:A

解析:

5.设{}为等差数列,公差d = -2,为其前n项和.若,则=( )

A.18 B.20 C.22 D.24

答案:B

解析:

6.观察下列各式:则,…,则的末两位数字为( )

A.01 B.43 C.07 D.49

答案:B

解析:

7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,设得分值的中位数为,众数为,平均值为,则( )

A. B.

C. D.

答案:D

解析:计算可以得知,中位数为5.5,众数为5所以选D

8.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:

父亲身高x(cm) 174 176 176 176 178

儿子身高y(cm) 175 175 176 177 177

则y对x的线性回归方程为

A.y = x-1 B.y = x+1 C.y = 88+ D.y = 176

答案:C

解析:线性回归方程,,

9.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )

答案:D

解析:左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。

10.如图,一个“凸轮”放置于直角坐标系X轴上方,其“底端”落在原点O处,一顶点及

中心M在Y轴正半轴上,它的由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.

今使“凸轮”沿X轴正向滚动前进,在滚动过程中“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放置,应大致为( )

答案:A

解析:根据中心M的位置,可以知道中心并非是出于最低与最高中间的位置,而是稍微偏上,随着转动,M的位置会先变高,当C到底时,M最高,排除CD选项,而对于最高点,当M最高时,最高点的高度应该与旋转开始前相同,因此排除B ,选A。

二.填空题:本大题共5小题,每小题5分,共25分.

11.已知两个单位向量,的夹角为,若向量,,则=___.

答案:-6.

解析:要求*,只需将题目已知条件带入,得:

*=(-2)*(3+4)=

其中=1,==1*1*=,,

带入,原式=3*1—2*—8*1=—6

(PS: 这道题是道基础题,在我们做过的高考题中2007年广东文科的第四题,以及寒题海班文科讲义73页的第十题,几乎是原题。考查的就是向量的基本运算。送分题(*^__^*) )

若双曲线的离心率e=2,则m=____.

答案:48.

解析:根据双曲线方程:知,

,并在双曲线中有:,

离心率e==2=,

m=48

(PS: 这道题虽然考的是解析几何,大家印象中的解几题感觉都很难,但此题是个非常轻松的得分题。你只需知道解几的一些基本定义,并且计算也不复杂。在2008年安徽文科的第14题以及2009福建文科的第4题都见过。所谓认真听课,勤做笔记,有的就是这个效果!)

13.下图是某算法的程序框图,则程序运行后输出的结果是____.

答案:27.

解析:由框图的顺序,s=0,n=1,s=(s+n)n=(0+1)*1=1,n=n+1=2,依次循环

S=(1+2)*2=6,n=3,注意此刻3>3仍然是否,所以还要循环一次

s=(6+3)*3=27,n=4,此刻输出,s=27.

(PS: 程序框图的题一直是大家的青睐,就是一个循环计算的过程。2010天津文科卷的第3题,考题与此类似)

已知角的顶点为坐标原点,始边为x轴的正半轴,若是角终边上一点,且,则y=_______.

答案:—8.

解析:根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角。=

(PS:大家可以看到,步骤越来越少,不就意味着题也越来越简单吗?并且此题在我们春季班教材3第10页的第5题,出现了一模一样。怎么能说高考题是难题偏题。)

15.对于,不等式的解集为_______

答案: . x>=0

解析:两种方法,

方法一:分三段,

当x<-10时, -x-10+x-2,

当 时, x+10-x+2,

当x>2时, x+10-x+2, x>2

x>=0

方法二:用绝对值的几何意义,可以看成到两点-10和2的距离差大于等于8的所有点的集合,画出数轴线,找到0到-10的距离为10,到2的距离为2,,并当x往右移动,距离差会大于8,所以满足条件的x的范围是. x>=0

(PS: 此题竟出现在填空的最后一道压轴题,不知道神马情况。。。。。更加肯定考试考的都是基础,并且!!在我们除夕班的时候讲过一道一摸一样,只是换了数字而已的题型,在除夕教材第10页的15题。。太强悍啦!!几乎每道都是咱上课讲过的题目~~所以,亲爱的童鞋们,现在的你上课还在聊Q, 睡觉流口水吗)

2023高考文科数学难不难

这题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.

设BD与AC的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;第二问通过AP=1,AD根号3,三棱锥P-ABD体积V=根号3/4,求出AB,作AH⊥PB角PB与H。

解: (1)证明:设BD与AC的交点为O,连结EO,

∵ABCD是矩形,∴O为BD中点,这是详细答案://gz.qiujieda/exercise/math/804043你看下。有详细的解答过程及分析。四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD中点。(1)证明:PB∥平面AEC;(2)设AP=1,AD=根号3,三棱锥P-ABD体积V=根号3/4.求A到平面PBC距离。

你自己琢磨下答案,不明白可以继续问我哦,加油~有帮助的话希望能给你个纳哦,祝你学习进步!

高考文科数学内容

2023高考文科数学不难

高考数学一直都是很多学生的“心病”,毕竟高考数学不会是真的不会,编都编不出来。在今年高考数学结束之后,“高考数学”“高考数学难不难”“新高考一卷数学 大题难”纷纷登上了热搜榜。

2023年高考数学乙卷的难度相比去年差不太多,但对于考生来说,要取得理想的成绩仍需要具备扎实的数学功底、良好的应试心态和全面掌握试题的难点与解题思路。

部分同学表示全国乙卷高考文科数学难度是比较大的,乙卷数学就属于刚拿到试卷的时候,浏览一遍觉得还行,但是真正做起来难度是比较大的,计算量真的非常多。

这对于高考考生来说可能带来一定的挑战,但也是他们成长和提高的机会。全国乙卷高考文科数学试题一般就是按步骤给分,没有太多的灵活性。在估数学分时,重点在大题的估分上,要按步骤算分,解题的方法可能不一样,但是在步骤上相当的位置会给同样的分。

全国乙卷高考文科数学试题计算题不要只看结果就断定自己一定满分或是一定零分。高考试卷答案上都有很明显的步骤分,不要去看结果,结果充其量也就一分。一定要看好全国乙卷高考文科数学试题答案的给分点步骤你有没有,如果没有那么一定没有分,及时你答案对了。

2007年新课标文科数学高考题

高考文科数学内容如下:

1、忽视集合元素的三性致误

集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

2、判断函数奇偶性忽略定义域致误

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

3、函数零点定理使用不当致误

如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。

4、函数的单调区间理解不准致误

在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

高中数学公式

1、十倍角公式

sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))

cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))

tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

2、万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

3、半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

2018年浙江高考数学试卷试题及答案解析(答案WORD版)

孩子,07年的新课标卷是宁夏海南卷。

2007年普通高等学校招生全国统一考试

文科数学(宁夏、 海南卷)

本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第II卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.

注意事项:

1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上

的准考证号、姓名,并将条形码粘贴在指定位置上.

2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂基他答案标号,非选择题答案使用毫米的黑色中性(签字)笔或炭素笔书写,字体工整、笔迹清楚.

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.

4.保持卡面清洁,不折叠,不破损.

5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.

参考公式:

样本数据,,,的标准差 锥体体积公式

其中为标本平均数 其中为底面面积,为高

柱体体积公式 球的表面积、体积公式

其中为底面面积,为高 其中为球的半径

第Ⅰ卷

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,

只有一项是符合题目要求的.

1.设集合,则(  )

A. B.

C. D.

解析由,可得.

答案:A

2.已知命题,,则(  )

A., B.,

C., D.,

解析是对的否定,故有:

答案:C

3.函数在区间的简图是(  )

解析排除B、D,排除C。也可由五点法作图验证。

答案:A

4.已知平面向量,则向量(  )

A. B.

C. D.

解析

答案:D

5.如果执行右面的程序框图,那么输出的(  )

A.2450 B.2500

C.2550 D.2652

解析由程序知,

答案:C

6.已知成等比数列,且曲线的顶点是,则等于(  )

A.3 B.2 C.1 D.

解析曲线的顶点是,则:由

成等比数列知,

答案:B

7.已知抛物线的焦点为,点,

在抛物线上,且,则有(  )

A. B.

C. D.

解析由抛物线定义,即:.

答案:C

8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),

可得这个几何体的体积是(  )

A. B.

C. D.

解析如图,

答案:B

9.若,则的值为(  )

A. B.  C. D.

解析

答案:C

10.曲线在点处的切线与坐标轴所围三角形的面积为(  )

A. B. C. D.

解析:曲线在点处的切线斜率为,因此切线方程为则切线与坐标轴交点为所以:

答案:D

11.已知三棱锥的各顶点都在一个半径为的球面上,

球心在上,底面,,

则球的体积与三棱锥体积之比是(  )

A. B. C. D.

解析如图,

答案:D

12.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表

甲的成绩

环数 7 8 9 10

频数 5 5 5 5

乙的成绩

环数 7 8 9 10

频数 6 4 4 6

丙的成绩

环数 7 8 9 10

频数 4 6 6 4

分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有(  )

A. B.

C. D.

解析

答案:B

第Ⅱ卷

本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题为选考题,考生根据要求做答.

二、填空题:本大题共4小题,每小题5分.

13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,

则该双曲线的离心率为     .

解析如图,过双曲线的顶点A、焦点F分别向其渐近线作垂线,垂足分别为B、C,

则:

答案:3

14.设函数为偶函数,则    .

解析

答案:-1

15.是虚数单位,     .(用的形式表示,)

解析

答案:

16.已知是等差数列,,其前5项和,则其公差    .

解析

答案:

三、解答题:解答应写出文字说明,证明过程或演算步骤.

17.(本小题满分12分)

如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高.

解析在中,.

由正弦定理得.

所以.

在中,.

18.(本小题满分12分)

如图,为空间四点.在中,.

等边三角形以为轴运动.

(Ⅰ)当平面平面时,求;

(Ⅱ)当转动时,是否总有?

证明你的结论.

解析(Ⅰ)取的中点,连结,

因为是等边三角形,所以.

当平面平面时,

因为平面平面,

所以平面,

可知

由已知可得,在中,.

(Ⅱ)当以为轴转动时,总有.

证明:

(ⅰ)当在平面内时,因为,

所以都在线段的垂直平分线上,即.

(ⅱ)当不在平面内时,由(Ⅰ)知.又因,所以.

又为相交直线,所以平面,由平面,得.

综上所述,总有.

19.(本小题满分12分)设函数

(Ⅰ)讨论的单调性;

(Ⅱ)求在区间的最大值和最小值.

解析的定义域为.

(Ⅰ).

当时,;当时,;当时,.

从而,分别在区间,单调增加,在区间单调减少.

(Ⅱ)由(Ⅰ)知在区间的最小值为.

又.

所以在区间的最大值为.

20.(本小题满分12分)设有关于的一元二次方程.

(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,

求上述方程有实根的概率.

(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,

求上述方程有实根的概率.

解析设为“方程有实根”.

当,时,方程有实根的充要条件为.

(Ⅰ)基本共12个:

其中第一个数表示的取值,第二个数表示的取值.

中包含9个基本,发生的概率为.

(Ⅱ)试验的全部结束所构成的区域为.

构成的区域为.

所以所求的概率为.

21.(本小题满分12分)

在平面直角坐标系中,已知圆的圆心为,过点

且斜率为的直线与圆相交于不同的两点.

(Ⅰ)求的取值范围;

(Ⅱ)是否存在常数,使得向量与共线?如果存在,求值;

如果不存在,请说明理由.

解析(Ⅰ)圆的方程可写成,所以圆心为,过

且斜率为的直线方程为.

代入圆方程得,

整理得.   ①

直线与圆交于两个不同的点等价于

解得,即的取值范围为.

(Ⅱ)设,则,

由方程①,

又.    ③

而.

所以与共线等价于,

将②③代入上式,解得.

由(Ⅰ)知,故没有符合题意的常数.

22.请考生在A、B两题中任选一题作答,如果多做,则按所做的第一题记分.作答时,

用2B铅笔在答题卡上把所选题目对应的标号涂黑.

22.A(本小题满分10分)选修4-1:几何证明选讲

如图,已知是的切线,为切点,是的割线,与

交于两点,圆心在的内部,点是的中点.

(Ⅰ)证明四点共圆;

(Ⅱ)求的大小.

解析(Ⅰ)证明:连结.

因为与相切于点,所以.

因为是的弦的中点,所以.

于是.

由圆心在的内部,可知四边形的对角互补,

所以四点共圆.

(Ⅱ)解:由(Ⅰ)得四点共圆,所以.

由(Ⅰ)得.

由圆心在的内部,可知.

所以.

22.B(本小题满分10分)选修4-4:坐标系与参数方程

和的极坐标方程分别为.

(Ⅰ)把和的极坐标方程化为直角坐标方程;

(Ⅱ)求经过,交点的直线的直角坐标方程.

解析以有点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.

(Ⅰ),,由得.

所以.

即为的直角坐标方程.

同理为的直角坐标方程.

(Ⅱ)由

解得.

即,交于点和.

过交点的直线的直角坐标方程为.

2012广东高考文科数学第三题求向量AC。向量AC求法:“不是后面坐标减去前面坐标咩?”若不是,那什么时...

2018年浙江高考数学试卷试题及答案解析(答案WORD版)

2015年浙江省高考数学命题思路

(数学学科组)

2015年高考是浙江省普通高中深化课程改革首届学生的首次高考,考试范围和要求都有一定的变化。数学试卷遵循《考试说明》,不超纲;依照《教学指导意见》,不偏离;贴近高中数学教学实际,不脱节。

试卷延续了叙述简洁、表达清楚的一贯风格,难度稳定,并呈现出稳中有变,变中求新的特点。

1.稳定考查基础,推陈出新

2015年高考考查范围虽有变化,但试卷仍然稳定考查高中数学主干知识,既关注新增知识点,也注意典型问题和传统方法。理科第4题考查新增知识点,它要求学生对命题有清晰的认识;理科第8题以常见的图形翻折为背景,考查空间想象能力。

2.稳定能力要求,角度变换

试卷在落实基础知识和基本技能的同时,注重对数学思维和数学本质的考查。理科第6题是学习型问题,它依托教材,设问清楚,现学现用;理科第20题以常见二次函数和简单递推为载体构建问题,角度新颖,思维灵活;理科第15题通过空间向量的平台,利用不等式关系,体现最小值的本质,问题的结构特点能让学生有多角度的思考空间。

3.稳定文理差异,逐步调整

试卷关注文理学生的学习差异,文理卷只有一题相同,文科卷中有5题由理科题改编而来。文科第8题由理科第7题改编,问题由抽象变具体,减少了思维量,降低了难度;理科第14题改变数据成为文科第14题,避免了分类讨论,简化了问题;文科第6题是一个生活实际问题,它体现了数学的应用性,这样的变化显示了文理的不同要求。

4.稳定试卷框架,形式渐变

试卷整体结构稳定,充分发挥了三种题型的不同功能。选择题重视概念的本质,要求判断准确。填空题关注计算的方法,要求结论正确,多空题的出现,更好的分散了难点,让学生能分步得分。解答题以多角度、全方位的思考为突破口,展示计算和推理的过程。试卷由22题减为20题,总题量的减少为学生提供了更多的思考时间。

试卷重基础、优思维、减总量、调结构。从基本的函数、常见的图形、简单的递推、熟悉的符号中挖掘出新的设问。它强化本质,强调思维的深刻性;它关注方法,注重思维的灵活性。它导向正确,让数学学习关注本质,课堂教学回归学生。

2015年浙江省高考数学试题评析

调整试卷结构凸显能力考查

绍兴一级教师虞金龙

浙江省教研室特级教师张金良

今年的高考数学试卷,延续了浙江省多年的命题风格,保持了“低起点、宽入口、多层次、区分好”的特色,试题的题型和背景熟悉而常见,整体感觉试题灵活,思维含量高,能充分考查学生的数学素养、思维品质、学习潜能,有很好的区分度和选拔功能。试卷主要体现了以下特点:

1.考查双基、注重覆盖

试卷全面考查了高中数学的基础知识和基本技能,着重考查了中学数学教材中的主干知识,准确把握了高中数学的教学重点。试题覆盖了高中数学的核心知识,涉及了函数的概念、单调性、周期性、最大值与最小值、三角函数、数列、立体几何、解析几何等主要知识,考查全面而又深刻,甚至容易被忽视的存在量词也进行了必要的考查。

2.注重思维、凸显能力

今年的试题看似熟悉平淡,但将数学思想方法和素养作为考查的重点,提高了试题的层次和品位,能力考查步伐加大,许多试题保持了干净、简洁、朴实、明了的特点,充分体现了数学语言的形式化与数学的意义,对考生的数学语言的.阅读、理解、转化、表达等能力提出了较高的要求。如理科第7、8、14、15、18、20题,文科第8、15、20(2)题等,数学形式化程度高,不仅需要考生有较强的数学阅读与审题能力,而且需要考生有灵活机智的解题策略与分析问题解决问题的综合能力。

3.分层考查、文理有别

试题层次分明,由浅入深,各类题型的起点难度较低,但落点较高,选择、填空题的前几道不需花太多时间就能破题,而后几题则需要在充分理解数学概念的基础上灵活应变;解答题的5个题目有10个小题,仍然具有往年的“多问把关”的命题特点。试卷关注文理考生在数学学习方面的差异。理科特点突出,注重考查理性思维和抽象概括能力,文科注重考查形象思维和定量处理能力。全卷文理相同题仅有1题,姐妹题也只有2题,文科较理科在许多方面都作了适当的降低。

4.稳中有变、坚持创新

创新是时代的特征,试卷在三类题型不变的基础上,在试卷结构与命题手法上作了创新,改变以往一成不变的模式,减少了两个选择题,丰富了填空题的形式,出现了一题多空。在命题手法上,通过改造、移植、嫁接的方法编制了一批立意深远、背景丰富、表述简洁的新题。如理科第8题看似简单,但颇值得回味;理科第15题题型新颖,背景深刻,过程简练,不落俗套;理科第18题在经典的二次函数中植入新的设问,令人耳目一新;理科压轴题简洁灵活,独具匠心,需要考生冷静分析后破题;文科第8题在椭圆定义与平面几何性质上做文章,平淡中出新招,凸显了数学的魅力。

统揽全卷,试卷传递一个信息:考生盲目的题海战术,做再多的题也不能考出理想的成绩。高中数学教学要让学生感受到基础知识和基本技能的重要性,要引导学生学会在“看、做、想、研”的基础上做题。

∵向量AB=(1,2),BC=(3,4)

∴向量AC=向量AB+ BC =(1+3,2+4)=(4,6)

选择A

向量AC求法:已知A,C坐标时,用C坐标减A坐标;

本题是已知,向量AB=(1,2),BC=(3,4)求向量AC

就得用向量合成的方法,解题时要注意向量的方向

向量AC=向量AB+BC

文章标签: # 答案 # 数学 # 解析