您现在的位置是: 首页 > 教育资讯 教育资讯
2013高考山东数学试题,2013高考数学山东卷
tamoadmin 2024-06-18 人已围观
简介1.山东高考数学2023难度2.2013年山东高考科目3.山东高考文科数学的答案4.山东高考数学试题难度?2023年山东高考数学试卷总体难度适中,与往年相比略有提高。考题概述2023年山东高考数学试卷总体难度适中,与往年相比略有提高。试卷涵盖了数学的基础知识和常规应用,难度较为均衡,针对不同层次的考生都有相应难度的题目。高考数学命题趋势从近几年高考数学试卷命题趋势来看,试题难度逐年提高,并且注重综
1.山东高考数学2023难度
2.2013年山东高考科目
3.山东高考文科数学的答案
4.山东高考数学试题难度?
2023年山东高考数学试卷总体难度适中,与往年相比略有提高。
考题概述
2023年山东高考数学试卷总体难度适中,与往年相比略有提高。试卷涵盖了数学的基础知识和常规应用,难度较为均衡,针对不同层次的考生都有相应难度的题目。
高考数学命题趋势
从近几年高考数学试卷命题趋势来看,试题难度逐年提高,并且注重综合素质和跨学科的应用能力,突出数学在科技创新和社会发展中的重要作用。
数学备考建议
为了顺利通过高考数学,考生需要把握复习重点和难点,注重巩固基础知识,勤做题、讲思路,提高解题能力,同时也要注重实际应用,多了解数学在生活中的应用场景。
数学在现代科技中的应用
数学是现代科技的重要支柱,广泛应用于人工智能、大数据分析、物联网等领域,对经济、社会和国家安全等发挥着不可替代的作用。
数学科研前沿
数学作为一门顶级学科,在各个领域都有着广泛的应用和研究。目前,人工智能、量子计算、拓扑理论等前沿领域正在快速发展,许多科研工作者正在探索新的理论和应用,推动着数学的快速发展。
数学与职业发展
数学在现代科技和经济发展中的重要作用,也为广大数学专业毕业生提供了更多就业机会。除了传统的教育、金融等领域,越来越多的互联网和科技公司开始注重数学人才的招聘,如算法工程师、数据分析师等,因此,掌握扎实的数学知识和解题能力对个人职业发展有着重要的意义。
数学学习的意义
数学是一门深奥而又充满魅力的学科,它不仅有着广泛的应用场景,而且在人类认知世界的过程中扮演了重要角色。通过学习数学,可以提高人们的逻辑思维能力、抽象思考能力和问题求解能力,对于培养创新精神和全面素质也有着积极的促进作用。
总之,2023年山东高考数学试卷难度适中,考生需要针对性地备考,提高解题能力和实际应用能力,同时也应该始终牢记,学习数学不仅是为了高考,更是为了人生的成长和发展。
山东高考数学2023难度
2023山东高考数学不难,满分150分。
2023山东高考数学难度分析:
1、2023年新高考数学试题根据学科特点,面向全体考生,服务选才要求,科学调控试卷的难度,坚持数学科高考的基础性、综合性、应用性和创新性的要求,贯彻了“低起点,多层次,高落差”的科学调控策略,发挥了数学考试的选拔功能和良好的导向作用。
2、“低起点”体现为试卷在选择题、填空题、解答题部分进行了系统设计,起始题部分起点低、入口宽,从数学概念、数学方法等方面入手,面向全体学生。例如第1至5题,第17至19题面向全体考生,体现注重考查基础知识,回归教材的特点。
3、“多层次”体现为在试题的难度设计上重视难度和思维的层次性。考生在数学概念的理解、基本数学方法的掌握,数学素养的养成等方面与思维水平有高度的关联性。因此在试题的命制的过程中重视难度和思维的层次性,给广大学生更广阔的思考空间,更多的思考角度。
高考现行方案:
1、3加X方案
3指“语文、数学、外语”,X指由学生根据自己的意愿,自主从文科综合(简称文综,分为思想政治、历史、地理)和理科综合(简称理综,分为物理、化学、生物)2个综合科目中选择一个作为考试科目。该方案是到2019年全国应用最广,最成熟的高考方案。总分750分。
2、3加3方案
第一个3是指语文、数学、外语是3门必考科目,第二个3是指从物理、历史、政治、地理、生物、化学六门任意选择3门来学习。语文、数学、外语以原始分成绩计入总分,物理、历史、政治、地理、生物、化学以等级换算分计入总分。
3、312方案
3是指语文、数学、外语是3门必考科目,1是指物理、历史选择1科作为必考,但两门只能选择一门,2是指再从政治、地理、生物、化学四门任意选择2门来学习。
以上数据出自高三网。
2013年山东高考科目
2023山东高考数学总体来说有难度。
2023年山东省高考数学试题总体来说有难度。数学试题难不难想必一定是考生讨论的热门话题,有的人觉得难,有的人觉得不难。2023山东高考数学试题第4题考查台体的体积计算,但并没有直接考查,而是将此知识融入到实际生活背景中,考查学生的数学建模能力,将实际问题抽象为数学问题来解决。
2023山东高考数学虽然考的内容非常基础,但是题目创新性非常高,这给很多考生带来了不小的压力。高考试卷难度单单从试卷的试题本身来说,这个和每个人的知识点掌握程度和擅长的题目类型有关系,还和个人的临场发挥有关联,高考考生现场状态非常重要。
2023山东高考数学答题技巧
1、先易后难
就是先做简单的数学题,再做综合题,高考时应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2、先熟后生
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
3、先小后大
小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间。
4、先点后面
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面。
5、先高后低
即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题:估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
山东高考文科数学的答案
2013年山东高考科目有
文史类考生考语文、数学(文史类)、外语、文科综合(包括政治、历史、地理)、基本能力测试;理工类考生考语文、数学(理工类)、外语、理科综合(包括物理、化学、生物)、基本能力测试。
语文、数学、外语试题满分各为150分,外语中含听力测试满分30分;“文科综合”和“理科综合”试题满分各为240分;基本能力测试试题分值为100分,以考生答题得分的60%计入高考总分。各科累计总成绩满分为750分。
语文、数学、英语(不含听力)、文科综合、理科综合、基本能力测试6科由我省自行命题,英语听力和小语种科目由教育部命题。
山东高考数学试题难度?
试题与答案
数学试题(文科)
第Ⅰ卷 选择题(共50分)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)
1.已知集合 , ,则 =( A )
A. B.
C. D.
2.若复数 ( , 为虚数单位位)是纯虚数,则实数 的值为( )
A.6 B.-2 C.4 D.-6
3.已知 ,则“ ”是“ ”的 ( B )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.已知点P(x,y)在不等式组 表示的平面区域上运动,
则z=x-y的取值范围是( )
A.[-2,-1] B.[-1,2] C.[-2,1] D.[1,2]
5.双曲线 的离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为( )
A. B. C. D.
一年级 二年级 三年级
女生 373
男生 377 370
6.某校共有学生2000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的
学生人数为( )
A.24 B.18 C.16 D.12
7.平面向量 =( )
A.1 B.2 C.3 D.
8.在等差数列 中,已知 ,那么 的值为( )
A.-30 B.15 C.-60 D.-15
9.设 、 为两个不同的平面,l、m为两条不同的直线,且l ,m ,有如下的两个命题:①若 ‖ ,则l‖m;②若l⊥m,则 ⊥ .那么( )
A.①是真命题,②是假命题 B.①是假命题,②是真命题
C.①②都是真命题 D.①②都是假命题
10.已知一个几何体的三视图如所示,则该几何体的体积为( )
A.6 B.5.5
C.5 D.4.5
第Ⅱ卷 非选择题(共100分)
二、填空题:本大题共7小题,考生作答5小题,每小题5分,满分25分.
(一)必做题(11~14题)
11.已知 ,且 是第二象限的角,
则 ___________.
12.执行右边的程序框图,若 =12, 则输
出的 = ;
13.函数 若
则 的值为: ;
14.圆 上的点到直线 的最大距离与最小距离之差是: _____________.
(二)选做题(15~17题,考生只能从中选做一题)
15.(选修4—4坐标系与参数方程)曲线 与曲线 的位置关系是: (填“相交”、 “相切”或“相离”) ;
16.(选修4—5 不等式选讲)不等式 的解集是: ;
17.(选修4—1 几何证明选讲)已知 是圆 的切线,切点为 , . 是圆 的直径, 与圆 交于点 , ,则圆 的半径 .
三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分)
18.(本小题12分)
已知向量 , ,设 .
(1).求 的值;
(2).当 时,求函数 的值域。
19.(本小题12分)
已知函数 .
(1)若 从集合 中任取一个元素, 从集合 中任取一个元素,
求方程 有两个不相等实根的概率;
(2)若 从区间 中任取一个数, 从区间 中任取一个数,求方程 没有实根的概率.
20.(本小题12分)
在平面直角坐标系xoy中,已知四点 A(2,0), B(-2,0), C(0,-2),D(-2,-2),把坐标系平面沿y轴折为直二面角.
(1)求证:BC⊥AD;
(2)求三棱锥C—AOD的体积.
21.(本小题12分)
已知数列 的前n项和为 , 且满足 ,
(1) 求 的值;
(2) 求证:数列 是等比数列;
(3) 若 , 求数列 的前n项和 .
22、(本小题13分)
已知函数 在点 处的切线方程为 .
(1)求 的值;
(2)求函数 的单调区间;
(3)求函数 的值域.
23.(本小题14分)已知椭圆 两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足 =1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求直线AB的斜率;
(3)求△PAB面积的最大值.
文科数学参考答案与评分标准
一、选择题:
A卷选择题答案
题号 1 2 3 4 5 6 7 8 9 10
答案 A D A B D C B A D C
B卷选择题答案
题号 1 2 3 4 5 6 7 8 9 10
答案
二、填空题:
(一)必做题
11. ; 12.4.; 13.1或 ; 14. .
(二)选做题
15.相交;16. ;17. .
三、解答题:
18.解: =
=
= ……………………………………(4分)
(1)
= …………………………(8分)
(2)当 时, ,
∴ ………………………(12分)
19.解:(1)a取集合{0,1,2,3}中任一元素,b取集合{0,1,2}中任一元素
∴a、b的取值情况有(0,0),(0,1)(0,2)(1,0)(1,1)(1,2)(2,0),
(2,1),(2,2),(3,0)(3,1)(3,2)其中第一个数表示a的取值,第二个数表示b的取值,基本事件总数为12.
设“方程 有两个不相等的实根”为事件A,
当 时方程 有两个不相等实根的充要条件为
当 时, 的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2)
即A包含的基本事件数为6.
∴方程 有两个不相等的实根的概率
……………………………………………………(6分)
(2)∵a从区间〔0,2〕中任取一个数,b从区间〔0,3〕中任取一个数
则试验的全部结果构成区域
这是一个矩形区域,其面积
设“方程 没有实根”为事件B
则事件B构成的区域为
即图中阴影部分的梯形,其面积
由几何概型的概率计算公式可得方程 没有实根的概率
………………………………………………(12分)
20.解法一:(1)∵BOCD为正方形,
∴BC⊥OD, ∠AOB为二面角B-CO-A的平面角
∴AO⊥BO ∵AO⊥CO 且BO∩CO=O
∴AO⊥平面BCO 又∵
∴AO⊥BC 且DO∩AO=O ∴BC⊥平面ADO
∴BC⊥AD …………(6分)
(2) …………………………(12分)
21.解:(1)因为 ,令 , 解得 ……1分
再分别令 ,解得 ……………………………3分
(2)因为 ,
所以 ,
两个代数式相减得到 ……………………………5分
所以 ,
又因为 ,所以 构成首项为2, 公比为2的等比数列…7分
(3)因为 构成首项为2, 公比为2的等比数列
所以 ,所以 ……………………………8分
因为 ,所以
所以
令
因此 ……………………………11分
所以 ………………………12分
22.解:(1)
∵ 在点 处的切线方程为 .
∴ …………………………(5)
(2)由(1)知: ,
x
2
+ 0 — 0 +
极大
极小
∴ 的单调递增区间是: 和
的单调递减区间是: ………………………………(9)
(3)由(2)知:当x= -1时, 取最小值
当x= 2时, 取最大值
且当 时, ;又当x<0时, ,
所以 的值域为 ………………………………………(13)
23.解:(1) , ,设
则 ,
又 , ,∴ ,即所求 ……(5分)
(2)设 : 联立
得:
∵ ,∴ ,
则
同理 , ∴ ……(10分)
(3)设 : ,联立
,得: ,∴
∴|AB|=
而
∴S=
当且仅当m=±2时等号成立。…………………………………(14分)
选择题运算量较大,后三个要求有一定的功底。填空倒数第二个较灵活,最后一个较难。大题第二个(立体几何)就有一定难度,第四个大题第二问比较灵活,运算量较大。最后两个大题思维含量比较高,运算上比去年略微简化。总体难度较大,但比去年稍稍简单一点。
上一篇:恶搞配音高考,恶搞配音秀