您现在的位置是: 首页 > 教育政策 教育政策
2014高考三角函数文科,历年高考三角函数
tamoadmin 2024-06-14 人已围观
简介1.高三数学三角函数专题知识点2.文科数学高考必背公式总结3.高考文科必背数学公式4.高三文科数学 三角函数整体角 这题如何解?5.高考数学,文科简单三角函数比较大小高三文科生在复习数学科目时,首先需要掌握数学公式。为了帮助高考考生掌握数学公式,下面我为高三文科生整理数学公式,希望对大家有所帮助! 高三文科数学公式 一、对数函数 log.a(MN)=logaM+logN loga(M/N)
1.高三数学三角函数专题知识点
2.文科数学高考必背公式总结
3.高考文科必背数学公式
4.高三文科数学 三角函数整体角 这题如何解?
5.高考数学,文科简单三角函数比较大小
高三文科生在复习数学科目时,首先需要掌握数学公式。为了帮助高考考生掌握数学公式,下面我为高三文科生整理数学公式,希望对大家有所帮助!
高三文科数学公式
一、对数函数
log.a(MN)=logaM+logN
loga(M/N)=logaM-logaN
logaM^n=nlogaM(n=R)
logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)
二、简单几何体的面积与体积
S直棱柱侧=c*h(底面周长乘以高)
S正棱椎侧=1/2*c*h?(底面的周长和斜高的一半)
设正棱台上、下底面的周长分别为c?,c,斜高为h?,S=1/2*(c+c?)*h
S圆柱侧=c*l
S圆台侧=1/2*(c+c?)*l=兀*(r+r?)*l
S圆锥侧=1/2*c*l=兀*r*l
S球=4*兀*R^3
V柱体=S*h
V锥体=(1/3)*S*h
V球=(4/3)*兀*R^3
三、两直线的位置关系及距离公式
(1)数轴上两点间的距离公式|AB|=|x2-x1|
(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式
|AB|=sqr[(x2-x1)^2+(y2-y1)^2]
(3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr
(A^2+B^2)
(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-
C2|/sqr(A^2+B^2)
同角三角函数的基本关系及诱导公式
sin(2*k*兀+a)=sin(a)
cos(2*k*兀+a)=cosa
tan(2*兀+a)=tana
sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana
sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana
sin(兀+a)=-sina
sin(兀-a)=sina
cos(兀+a)=-cosa
cos(兀-a)=-cosa
tan(兀+a)=tana
四、二倍角公式及其变形使用
1、二倍角公式
sin2a=2*sina*cosa
cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2
tan2a=(2*tana)/[1-(tana)^2]
2、二倍角公式的变形
(cosa)^2=(1+cos2a)/2
(sina)^2=(1-cos2a)/2
tan(a/2)=sina/(1+cosa)=(1-cosa)/sina
五、正弦定理和余弦定理
正弦定理:
a/sinA=b/sinB=c/sinC
余弦定理:
a^2=b^2+c^2-2bccosA
b^2=a^2+c^2-2accosB
c^2=a^2+b^2-2abcosC
cosA=(b^2+c^2-a^2)/2bc
cosB=(a^2+c^2-b^2)/2ac
cosC=(a^2+b^2-c^2)/2ab
tan(兀-a)=-tana
sin(兀/2+a)=cosa
sin(兀/2-a)=cosa
cos(兀/2+a)=-sina
cos(兀/2-a)=sina
tan(兀/2+a)=-cota
tan(兀/2-a)=cota
(sina)^2+(cosa)^2=1
sina/cosa=tana
两角和与差的余弦公式
cos(a-b)=cosa*cosb+sina*sinb
cos(a-b)=cosa*cosb-sina*sinb
两角和与差的正弦公式
sin(a+b)=sina*cosb+cosa*sinb
sin(a-b)=sina*cosb-cosa*sinb
两角和与差的正切公式
tan(a+b)=(tana+tanb)/(1-tana*tanb)
tan(a-b)=(tana-tanb)/(1+tana*tanb)
高中数学知识点速记口诀
1.《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
2.《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;
3.《不等式》
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的 方法 ,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
4.《数列》
等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。
5.《复数》
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
6.《排列、组合、二项式定理》
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
7.《立体几何》
点线面三位一体,柱锥 台球 为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
8.《平面解析几何》
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者一一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。
高三文科 数学 学习方法
一:加深理解
对数学课本里的概念要重新的认识,进一步加深对公式,定理的理解和掌握,认真看书,多练习,全面掌握,结合所有资料,提高解题的能力和更深知识的理解。
二:认真做笔记
上课时,一定要认真听,做笔记。听课不只是要听而已,还在积极的思考老师提出的问题,想想如何解决这个问题,应该要用什么方法,什么公式等等。老师上课时讲的,都会有一些的解题方法和思路,还有平时都会出错的问题,如何去解决,判断。所以上课做好笔记是必须的。
三:反复练习
高三数学三角函数专题知识点
变幻是魔幻修仙小说里才有的东东,你是一个人当然不会变幻,你只能学会变换
还有不要把某个百度贴吧的用词到处乱用,谢谢
f(x)=sin方wx+根号3 sinwx sin(wx+2分之派)
=(1-cos2wx)/2+根号3 sinwx coswx前一项用了倍角公式,后一项用了诱导公式,目的是把f(x)化为两个三角函数相加的形式
=(1-cos2wx)/2+根号3 sin2wx/2对后一项使用倍角公式
=(根号3 sin2wx-cos2wx)/2+1/2 这一步整理是为了使用角的和与差的正弦公式
=sin(2wx-派/6)/2+1/2使用角的和与差的正弦公式
所以,周期是T=2派/2w=派/w=派
w=1
再告诉你个技巧,不用上面的步骤就能做这种类型的题,那就是,如果前后项有一项是两个三角函数相乘或是一个三角函数的平方,那的系数就要在原来式子的系数上乘2,然后再用周期公式计算周期。
文科数学高考必背公式总结
已经进入高二上学期的同学们,在我们顺利度过高中的适应期,积极参与学校社团活动,逐步形成了自我学习模式,初步拟定人生规划后,要将自我的精力集中到学习上,应将自己的学业做到一个高度的时候了。我高二频道为你整理了《 高二数学 三角函数知识点》希望可以帮到你!
高三数学 三角函数专题知识点
锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
正割(sec)等于斜边比邻边;secA=c/b
余割(csc)等于斜边比对边。cscA=c/a
互余角的三角函数间的关系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
锐角三角函数公式
两角和与差的三角函数:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
推导公式:
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
其他:
sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
高三数学三角函数专题知识点
函数名正弦余弦正切余切正割余割
在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有
正弦函数sinθ=y/r
余弦函数cosθ=x/r
正切函数tanθ=y/x
余切函数cotθ=x/y
正割函数secθ=r/x
余割函数cscθ=r/y
正弦(sin):角α的对边比上斜边
余弦(cos):角α的邻边比上斜边
正切(tan):角α的对边比上邻边
余切(cot):角α的邻边比上对边
正割(sec):角α的斜边比上邻边
余割(csc):角α的斜边比上对边
三角函数万能公式
万能公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得证
同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
万能公式为:
设tan(A/2)=t
sinA=2t/(1+t^2)(A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2)(A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2)(A≠2kπ+π,且A≠kπ+(π/2)k∈Z)
就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.
高三数学三角函数专题知识点
三角函数关系
倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的关系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscαcα
平方关系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
倒数关系
对角线上两个函数互为倒数;
商数关系
六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。
平方关系
在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α)
高三数学三角函数专题知识点相关 文章 :
★ 高考数学三角函数重点考点归纳
★ 高考数学三角函数知识点总结
★ 高三数学解三角函数方法总结
★ 高三文科数学三角函数知识点归纳
★ 2017高考数学三角函数知识点总结
★ 高中数学必修一三角函数知识点总结
★ 高中必修4数学三角函数知识点归纳
★ 高三数学专题复习知识点
★ 高中三角函数知识点归纳
★ 高考数学常用三角函数公式总结
高考文科必背数学公式
高中数学对大部分考生来说算是一个比较有难度的学科,尤其是作为一名文科生,数学这种理科科目想必一定难倒了一大半吧!其实,高中数学里面有很多公式,掌握了这些公式,就没有那么难了。下文我给大家整理了《文科数学高考必背公式总结》。
文科数学高考必背公式
一、三角形公式
正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径
余弦定理:a2=b2+c2-2bc*cosA
sin(A+B)=sinC
sin(A+B)=sinAcosB+sinBcosA
sin(A-B)=sinAcosB+sinBcosA
sin2A=2sinAcosA
cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2
tan2A=2tanA/[1-(tanA)2]
(sinA)2+(cosA)2=1
二、诱导公式
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα
三、函数
1、函数的单调性
(1)设x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函数;
f(x1)f(x2)0f(x)在[a,b]上是减函数.
(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
高考文科数学必背公式口诀一、《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;
三、《不等式》
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
高三文科数学 三角函数整体角 这题如何解?
#高三# 导语无论你是理科生还是文科生,数学公式,你必须掌握。下面就让 无 给大家分享一些高考文科必背数学公式吧,希望能对你有帮助!
高考文科必背数学公式篇一
1、函数的单调性
(1)设x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函数;
f(x1)f(x2)0f(x)在[a,b]上是减函数.
(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
高考文科必背数学公式篇二
正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径
余弦定理:a2=b2+c2-2bc*cosA
sin(A+B)=sinC
sin(A+B)=sinAcosB+sinBcosA
sin(A-B)=sinAcosB+sinBcosA
sin2A=2sinAcosA
cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2
tan2A=2tanA/[1-(tanA)2]
(sinA)2+(cosA)2=1
高考文科必背数学公式篇三
公式一:设?为任意角,终边相同的角的同一三角函数的值相等:sin(2k?+?)=sin?(k?Z)cos(2k?+?)=cos?(k?Z)tan(2k?+?)=tan?(k?Z)cot(2k?+?)=cot?(k?Z)
公式二:设?为任意角,?+?的三角函数值与?的三角函数值之间的关系:sin(?+?)=-sin?cos(?+?)=-cos?tan(?+?)=tan?cot(?+?)=cot?
公式三:任意角?与-?的三角函数值之间的关系:sin(-?)=-sin?cos(-?)=cos?tan(-?)=-tan?cot(-?)=-cot?
公式四:利用公式二和公式三可以得到?-?与?的三角函数值之间的关系:sin(?-?)=sin?cos(?-?)=-cos?tan(?-?)=-tan?cot(?-?)=-cot?
公式五:利用公式一和公式三可以得到2?-?与?的三角函数值之间的关系:sin(2?-?)=-sin?cos(2?-?)=cos?tan(2?-?)=-tan?cot(2?-?)=-cot?
公式六:?/2?及3?/2?与?的三角函数值之间的关系:sin(?/2+?)=cos?cos(?/2+?)=-sin?tan(?/2+?)=-cot?cot(?/2+?)=-tan?sin(?/2-?)=cos?cos(?/2-?)=sin?tan(?/2-?)=cot?cot(?/2-?)=tan?sin(3?/2+?)=-cos?cos(3?/2+?)=sin?
高考数学,文科简单三角函数比较大小
将sin(a+pi/3)展开,然后sina项合并,然后等式两边都除以根号3,化为
1/2根号3sina+1/2cosa=-4/5,
sina2/3pi sina-cos2/3pi cosa=-4/5,
cos(a+2/3pi)=4/5
有多种方法!比较常用的有两种:图像法和三角函数线法(单位圆法)
我个人推荐用三角函数线,一是方便简洁,正确率高,二是三角函数线是很重要的知识点.三是比较好学,易懂!我就以下列两个例子说明:(要用到化归思想和诱导公式!)
1:比较下列的大小(同类三角函数):
sin660°和sin720° 首先,用诱导公式一进行化简:sin660°=sin(720°-60°)=sin(-60°)
=-sin60° =-二分之根号三 sin720°=sin(2x360°)=sin0°=0 则sin720°>sin660°
2:比较大小!(异类三角函数)
sin320°和cos60° sin320°=sin(90°+50°)+180°=-sin(90°+50°)=cos(-50°)=cos50°
因为余弦在第三象限和第四象限是递増的,且所以cos60°<cos50°