您现在的位置是: 首页 > 教育政策 教育政策
数学高考题答案2023_数学高考14题答案
tamoadmin 2024-06-07 人已围观
简介1.2010各省高考数学试题与答案2.2009年和2010年江苏理科数学高考卷试题和答案3.2007年重庆高考数学卷的答案详解4.广西成人高考专升本高等数学一考试真题及参考答案?5.2006上海高考数学试题答案理科 高考数学命题创新试题形式,引导教学注重培养核心素养和数学能力。下面是我为大家收集的关于2022年全国新高考1卷数学真题及答案详解。希望可以帮助大家。 2022年全国新高考1卷数学真
1.2010各省高考数学试题与答案
2.2009年和2010年江苏理科数学高考卷试题和答案
3.2007年重庆高考数学卷的答案详解
4.广西成人高考专升本高等数学一考试真题及参考答案?
5.2006上海高考数学试题答案理科
高考数学命题创新试题形式,引导教学注重培养核心素养和数学能力。下面是我为大家收集的关于2022年全国新高考1卷数学真题及答案详解。希望可以帮助大家。
2022年全国新高考1卷数学真题
2022年全国新高考1卷数学答案详解
如何提升高考数学成绩
1.对数学的认知。由于成绩长期没有提升,很多学生觉得数学本身就难,或者觉得自己不具备某种天赋、某种 方法 ,于是对自己怀疑,甚至对自己没有信心,那么这样的话很容易挫伤学习数学的积极性。
2.备考的方向。很多考生觉得多做题就行了,还有一些考生进行“题海战术”,每天面对大量的习题,同时也有好像永远都做不完题,结果是成绩没有提升上去。那么这个方向,当然也有一些考生走向了另一个极端,不喜欢做题甚至很少做题,这些考生有的觉得自己很聪明,应该能学好理科,特别是数学,结果拿到试卷后,觉得生疏,在短时间内很难把题目做好,对以上两类考生,都是属于备考方向的问题。
3.训练方式。备考中学习和考试其实既有区别又有联系,现实中学习努力的考生有的不一定会考试,会考试的学生不一定努力学习。当然前者远远多于后者。无论是会考试还是不会考试的学生,要想把试考好,对于绝大多数考生来讲,还是需要合理的训练,例如说数学学科来说,你需要在平时训练中注重这些关键词:时间分配、正确率、题型以及相关的解题方法、步骤等等。很多学生没有训练的目标,甚至一些考生做题的目标仅仅是为了完成老师布置的作业,这样训练方式肯定很难让自己的成绩提升上去。
4.教师教学等客观原因。在 毕业 班中老师重视成绩优秀的考生是普遍的现象,当然如果面对一些平时努力学习,成绩没有提升的同学,作为老师肯定要给学生们出谋划策,帮他们做改变,把成绩提升上去,同时现实中也并非所有老师都能这样去做,有的老师精力也不允许。但是无论怎样,考生成绩上不去,帮他们提升成绩更是老师的责任。如果我带一个班级的学生,肯定不会一刀切去布置作业,让每一个学生都按照同样的模式去走,要根据他们的实际需要,给出建议和方向。还是那句话,很多时候学习数学不是你做了多少题而是做了多少有效的题。
高考后如何调节心理
1、客观看待高考成绩
考试虽然结束了,但随之而来的对成绩的预测和获知,以及由此带来的考生种种心态变化和行为表现,尤其需要家长、学校和社会密切关注。
考试结束后,考生和家长的视线转移也会使情绪心理出现新变化,比较集中体现在对考试分数和能报考什么样的大学等方面的担忧。
建议考生应积极面对高考,懂得高考并不是人生的出路,高考只是人生中的一段旅程,要将其当作人生中的一个节点,是高中生活的结束,也是未来新生活的开始。考生不妨利用这段时间,好好规划一下自己的未来,比如考虑怎么选大学专业,或者要不要复读。每个人都可以有梦想,并为之去努力。同时家长也要保持平常心态,充分发挥好家庭“避风港”的作用,给孩子更多关心和呵护。
2、主动调整心理状态
考生考后常见的心理问题,主要表现为过度放纵、抑郁自责、焦虑不安、强迫思维、失眠多梦、躯体不适等。如果考生出现连续失眠、茶饭不思、无诱因腹疼腹泻、无故发火、易发脾气等情况,家长要注意考生可能存在的不良情绪,需引起关注并及时和积极引导、干预。
曾干指出,考生完成考试后,应保持平和的心态,正确调节自己的生活和心境,尤其要避免两种极端现象:一是过分放松、无度。不少考生认为反正考完了,要么一天到晚睡觉,要么长时间玩电脑、打游戏或与同学狂欢,结果反而招致身心疲惫;二是过度焦虑、自我封闭。考后出现适当的紧张、担忧是一种正常的心理状态,但是过度担心就不正常了,有些考生甚至足不出户,觉得自己考砸了,将自己封闭在家里,这些都是不可取的做法。
3、适当充实假期生活
建议考生在高考结束后,应遵循正常的生活和作息规律,并充分利用这段时间对自己中学时代的生活进行一个 总结 ,对未来的大学生涯进行一些“设想”,让自己能够平稳度过高考后的这段时光。
另外,高考后的暑假,考生还可根据各自不同的 兴趣 爱好 ,在注意人身安全和做好防疫的前提下,利用假期去参加有益身心健康的活动,学习课堂之外的知识,比如 体育运动 、考驾照、短途旅游等,也可从事志愿服务等 社会实践 ,增加社会阅历,从不同 渠道 去缓解高考成绩和填报志愿带来的压力。
2022年全国新高考1卷数学真题及答案详解相关 文章 :
★ 2022全国甲卷高考数学文科试卷及答案解析
★ 2022高考甲卷数学真题试卷及答案
★ 2022年新高考Ⅱ卷数学真题试卷及答案
★ 2022北京卷高考文科数学试题及答案解析
★ 2022高考全国甲卷数学试题及答案
★ 2022高考全国甲卷文综试题及答案一览
★ 2022高考数学大题题型总结
★ 2022全国乙卷理科数学真题及答案解析
★ 2022年高考数学必考知识点总结最新
★ 2022年新高考1卷语文真题及答案解析
2010各省高考数学试题与答案
高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学答案详解
2022高考数学知识点 总结
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式(组)
②根据具体问题中的数量关系列不等式(组)并解决简单实际问题
③用数轴表示一元一次不等式(组)的解集
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查 抽象思维 能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示 方法 的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新 热点 ”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
一、排列
1定义
(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.
2排列数的公式与性质
(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)
特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1
规定:0!=1
二、组合
1定义
(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合
(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
2比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
三、排列组合与二项式定理知识点
1.计数原理知识点
①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)
2.排列(有序)与组合(无序)
Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
Cnm=n!/(n-m)!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=(k+1)!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)
插空法(解决相间问题)间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
(1)把具体问题转化或归结为排列或组合问题;
(2)通过分析确定运用分类计数原理还是分步计数原理;
(3)分析题目条件,避免“选取”时重复和遗漏;
(4)列出式子计算和作答.
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想.
4.二项式定理知识点:
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)
所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与 其它 知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力
2022年全国新高考1卷数学试题及答案详解相关 文章 :
★ 2022高考北京卷数学真题及答案解析
★ 2022高考甲卷数学真题试卷及答案
★ 2022北京卷高考文科数学试题及答案解析
★ 2022高考全国甲卷数学试题及答案
★ 2022年新高考Ⅱ卷数学真题试卷及答案
★ 2022全国乙卷理科数学真题及答案解析
★ 2022高考数学大题题型总结
★ 2022年高考全国一卷作文预测及范文
★ 2022年高考数学必考知识点总结最新
★ 2022年全国乙卷高考数学(理科)试卷
2009年和2010年江苏理科数学高考卷试题和答案
2010年普通高等学校招生全国统一考试
理科数学(含答案)
本试卷分第I卷(选择题)和第II卷(非选择题)两部分。第I卷1至2页。第II卷3至4页。考试结束后,将本草纲目试卷和答题卡一并交回。
第I卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无交通工效。
3.第I卷共12小题,第小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:
如果事件A、B互斥,那么 球的表面积公式
如果事件A、B相互独立,那么 其中R表示球的半径
球的体积公式
如果事件A在一次试验中发生的概率是P,那么
n 次独立重复试验中事件A恰好发生K次的概率 其中R表示球的半径
一. 选择题
(1)复数 =
(A).i (B).-i (C).12—13i (D).12+13i
(2) 记cos(-80°)=k,那么tan100°=
(A). (B). —
(C.) (D).—
(3)若变量x,y满足约束条件 则z=x—2y的最大值为
(A).4 (B)3 (C)2 (D)1
(4) 已知各项均为正数比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6=
(A) 5 (B) 7 (C) 6 (D) 4
(5) (1+2 )3(1- )5的展开式中x的系数是
(A) -4 (B) -2 (C) 2 (D) 4
(6) 某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门。若要求两类课程中各至少一门,则不同的选法共有
(A)30种 (B)35种 (C)42种 (D)48种
(7)正方体 中, 与平面 所成角的余弦值为
(A) (B) (C) (D)
(8)设 则
(A) (B) (C) (D)
(9)已知 、 为双曲线 的左、右焦点,点在 在 上, 60°,则 到 轴的距离为
(A) (B) (C) (D)
(10)已知函数 ,若 ,且 ,则 的取值范围是
(A) (B) (C) (D)
(11)已知圆 的半径为1, 、 为该圆的两条切线, 、 为两切点,那么 ? 的最小值为
(A)-4+ (B)-3+ (C)-4+2 (D)-3+2
(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值
2010年普通高等学校招生全国统一考试
理科数学(必修+选修Ⅱ)
第Ⅱ卷
注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。请认真核准条形码上的准考证号、姓名和科目。
2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。
3.第Ⅱ卷共10小题,共90分。
二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.
(注意:在试题卷上作答无效)
(13)不等式 ≤1的解集是 。
(14)已知 为第三象限的角, ,则 。
(15)直线 =1与曲线 有四个交点,则 的取值范围是 。
(16)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且 ,则C的离心率为 。
三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)(注意:在试题卷上作答无效)
已知△ABC的内角A,B及其对边a,b满足 ,求内角C。
(18)(本小题满分12分)(注意:在试题卷上作答无效)
投到某杂志的稿件,先由两位专家进行评审,若能通过两位初审专家的评审,则予以录用;若两位专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用。设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3。各专家独立评审。
(Ⅰ)求投到该杂志的1篇稿件被录用的概率;
(Ⅱ)记X表示投到该杂志的4篇稿件中被录用的篇数,求X的分布列及期望。
(19) (本小题满分12分) (注意:在试题卷上作答无效)
如图,四棱锥S-ABCD 中,SD 底面ABCD,AB DC,AD DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC 平面SBC.
(Ⅰ) 证明:SE=2EB
(Ⅱ) 求二面角A-DE-C的大小。
(20)(本小题满分12分)(注意:在试题卷上作答无效)
已知函数f(x)=(x+1)Inx-x+1.
(Ⅰ)若 (x)≤ +ax+1,求a的取值范围;
(Ⅱ)证明:(x-1)f(x)≥0
(21)(本小题满分12分)(注意:在试题卷上作答无效)
已知抛物线C =4x的焦点为F,过点K(-1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.
(Ⅰ)证明:点F在直线BD上;
(Ⅱ)设 = ,求△BDK的内切圆M,的方程.
(22)(求本小题满分12分)(注意:在试题卷上作答无效)
已知数列 中
(Ⅰ)设c= ,求数列 的通项公式;
(Ⅱ)求使不等式 成立的c的取值范围。
2007年重庆高考数学卷的答案详解
2010 年江苏高考数学试题 一、填空题 1、设集合A={-1,1,3},B={a+2,a 2 +4},A∩B={3},则实数a=______▲________ 2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________ 3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__ 4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。 5、设函数f(x)=x(e x +ae -x ),x∈ R ,是偶函数,则实数a=_______▲_________ 6、在平面直角坐标系xOy中,双曲线 上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______ 7、右图是一个算法的流程图,则输出S的值是______▲_______ 开始 S←1 n←1 S←S+2 n S≥33 n←n+1 否 输出S 结束 是 8、函数y=x 2 (x>0)的图像在点(a k ,a k 2 )处的切线与x轴交点的横坐标为a k+1 ,k为正整数,a 1 =16,则a 1 +a 3 +a 5 =____▲_____ 9、在平面直角坐标系xOy中,已知圆 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____ 10、定义在区间 上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP 1 ⊥x轴于点P 1 ,直线PP 1 与y=sinx的图像交于点P 2 ,则线段P 1 P 2 的长为_______▲_____ 11、已知函数 ,则满足不等式 的x的范围是____▲____ 12、设实数x,y满足3≤ ≤8,4≤ ≤9,则 的最大值是_____▲____ 13、在锐角三角形ABC,A、B、C的对边分别为a、b、c, ,则 __▲ 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S= ,则S的最小值是_______▲_______ 二、解答题 15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB、AC为邻边的平行四边形两条对角线的长 (2)设实数t满足( )· =0,求t的值 16、(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90 0 (1)求证:PC⊥BC (2)求点A到平面PBC的距离 17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β (1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大 A B O F 18.(16分)在平面直角坐标系 中,如图,已知椭圆 的左右顶点为A,B,右顶点为F,设过点T( )的直线TA,TB与椭圆分别交于点M , ,其中m>0, ①设动点P满足 ,求点P的轨迹 ②设 ,求点T的坐标 ③设 ,求证:直线MN必过x轴上的一定点 (其坐标与m无关) 19.(16分)设各项均为正数的数列 的前n项和为 ,已知 ,数列 是公差为 的等差数列. ①求数列 的通项公式(用 表示) ②设 为实数,对满足 的任意正整数 ,不等式 都成立。求证: 的最大值为 20.(16分)设 使定义在区间 上的函数,其导函数为 .如果存在实数 和函数 ,其中 对任意的 都有 >0,使得 ,则称函数 具有性质 . (1)设函数 ,其中 为实数 ①求证:函数 具有性质 ②求函数 的单调区间 (2)已知函数 具有性质 ,给定 , ,且 ,若| |<| |,求 的取值范围 理科附加题 21(从以下四个题中任选两个作答,每题10分) (1)几何证明选讲 AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC (2)矩阵与变换 在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M= ,N= ,点A、B、C在矩阵MN对应的变换下得到点A 1 ,B 1 ,C 1 ,△A 1 B 1 C 1 的面积是△ABC面积的2倍,求实数k的值 (3)参数方程与极坐标 在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值 (4)不等式证明选讲 已知实数a,b≥0,求证: 22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立 (1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列 (2)求生产4件甲产品所获得的利润不少于10万元的概率 23、(10分)已知△ABC的三边长为有理数 (1)求证cosA是有理数 (2)对任意正整数n,求证cosnA也是有理数 绝密★启用前 学科网 2009年普通高等学校招生全国统一考试(江苏卷) 学科网 数学Ⅰ 学科网 注 意 事 项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。本卷满分160分,考试时间为120分钟。考试结束后,请将本卷和答题卡一并交回。 2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。 4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。作答必须用0.5毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚。 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。 6.请保持答题卡卡面清洁,不要折叠、破损。 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 参考公式: 学科网 样本数据 的方差 学科网 一、填空题:本大题共 14 小题,每小题 5 分,共 70 分。请把答案填写在答题卡相应的位置上 . 学科网 1.若复数 ,其中 是虚数单位,则复数 的实部为★. 学科网 2.已知向量 和向量 的夹角为 , ,则向量 和向量 的数量积 ★ . 学科网 3.函数 的单调减区间为 ★ . 学科网 1 1 O x y 4.函数 为常数, 在闭区间 上的图象如图所示,则 ★ . 学科网 学科网 5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 ★ . 学科网 6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表: 学科网 学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班 6 7 6 7 9 开始 输出 结束 Y N 则以上两组数据的方差中较小的一个为 ★ . 学科网 7.右图是一个算法的流程图,最后输出的 ★ . 学科网 8.在平面上,若两个正三角形的连长的比为1:2,则它们的面积比为1:4,类似地,在宣传部,若两个正四面体的棱长的比为1:2,则它们的体积比为 学科网 9.在平面直角坐标系 中,点P在曲线 上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为 ★ . 学科网 10.已知 ,函数 ,若实数 满足 ,则 的大小关系为 ★ . 学科网 11.已知集合 , ,若 则实数 的取值范围是 ,其中 ★ . 学科网 12.设和 为不重合的两个平面,给出下列命题: 学科网 (1)若 内的两条相交直线分别平行于 内的两条直线,则 平行于 ; 学科网 (2)若 外一条直线 与 内的一条直线平行,则和 平行; 学科网 (3)设和 相交于直线 ,若 内有一条直线垂直于 ,则和 垂直; 学科网 (4)直线 与 垂直的充分必要条件是 与 内的两条直线垂直. 学科网 上面命题中,真命题的序号 ★ (写出所有真命题的序号). 学科网 13.如图,在平面直角坐标系 中, 为椭圆 的四个顶点, 为其右焦点,直线 与直线 相交于点T,线段 与椭圆的交点 恰为线段 的中点,则该椭圆的离心率为 ★ . 学科网 x y A 1 B 2 A 2 O T M 学科网 学科网 14.设 是公比为 的等比数列, ,令 若数列 有连续四项在集合 中,则 ★ . 学科网 学科网 二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤 . 学科网 15.(本小题满分14分) 学科网 设向量 学科网 (1)若与 垂直,求 的值; 学科网 (2)求 的最大值; 学科网 (3)若 ,求证: ∥ . 学科网 16.(本小题满分14分) 学科网 A B C A 1 B 1 C 1 E F D 如图,在直三棱柱 中, 分别是 的中点,点在上, 学科网 求证:(1) ∥ 学科网 (2) 学科网 17.(本小题满分14分) 学科网 设 是公差不为零的等差数列, 为其前 项和,满足 学科网 (1)求数列 的通项公式及前 项和 ; 学科网 (2)试求所有的正整数 ,使得 为数列 中的项. 学科网 18.(本小题满分16分) 学科网 在平面直角坐标系 中,已知圆 和圆 学科网 x y O 1 1 . . 学科网 (1)若直线 过点 ,且被圆 截得的弦长为 ,求直线 的方程; 学科网 (2)设P为平面上的点,满足:存在过点P的无穷多对互相垂的直线 ,它们分别与圆 和圆 相交,且直线 被圆 截得的弦长与直线 被圆 截得的弦长相等,试求所有满足条件的点P的坐标. 学科网 19.(本小题满分16分) 学科网 按照某学者的理论,假设一个人生产某产品单件成本为 元,如果他卖出该产品的单价为 元,则他的满意度为 ;如果他买进该产品的单价为 元,则他的满意度为 .如果一个人对两种交易(卖出或买进)的满意度分别为 和 ,则他对这两种交易的综合满意度为 . 学科网 现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为 元和 元,甲买进A与卖出B的综合满意度为 ,乙卖出A与买进B的综合满意度为 学科网 (1) 求和 关于 、 的表达式;当时,求证: = ; 学科网 (2) 设 ,当、 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? 学科网 (3) 记(2)中最大的综合满意度为 ,试问能否适当选取 、 的值,使得 和 同时成立,但等号不同时成立?试说明理由。 学科网 学科网 20.(本小题满分16分) 学科网 设 为实数,函数 . 学科网 (1) 若 ,求 的取值范围; 学科网 (2) 求 的最小值; 学科网 (3) 设函数 ,直接写出(不需给出演算步骤)不等式 的解集. 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网
广西成人高考专升本高等数学一考试真题及参考答案?
参考答案
一、选择题:每小题5分,满分60分。
1.A
2.D
3.A
4.B
5.A
6.B
7.C
8.A
9.D
10.C
11.B
12.C
二、填空题:每小题4分,满分16分。
13.
14.9
15.288
16.1+2
三、解答题:满分74分
17.(本小题13分)
解:(Ⅰ)设A表示甲命中目标,B表示乙命中目标,则A、B相互独立,且P(A)=,从而甲命中但乙未命中目标的概率为
(Ⅱ)设A1表示甲在两次射击中恰好命中k次,B1表示乙有两次射击中恰好命中1次。
依题意有
由独立性知两人命中次数相等的概率为
18.(本小题13分)
解:(Ⅰ)由
故f(x)的定义域为
(Ⅱ)由已知条件得
从而
=
=
=
19.(本小题12分)
解法一:(Ⅰ)由直三棱柱的定义知B1C1⊥B1D,又因为∠ABC=90°,因此B1C1⊥A1B1,从而
B1C1⊥平面A1B1D,得B1C1⊥B1E。又B1E⊥A1D,
故B1E是异面直线B1C1与A1D的公垂线
由知
在Rt△A1B1D中,A2D=
又因
故B1E=
(Ⅱ)由(Ⅰ)知B1C1⊥平面A1B1D,又BC‖B1C1,故BC⊥平面ABDE,即BC为四棱锥C-ABDE的高。从而所求四棱锥的体积V为
V=VC-ABDE=
其中S为四边形ABDE的面积。如答(19)图1,过E作EF⊥BD,垂足为F。
答(19)图1
在Rt△B1ED中,ED=
又因S△B1ED=
故EF=
因△A1AE的边A1A上的高故
S△A1AE=
又因为S△A1BD=从而
S=S△A1AE-S△A1AE-S△A1B1D=2-
所以
解法二:(Ⅱ)如答(19)图2,以B点为坐标原点O建立空间直角坐标系O-xyz,则
答(19)图2
A(0,1,0),A1(0,1,2),B(0,0,0)
B1(0,0,2),C1(,0,2),D(0,0,)
因此
设E(,y0,z0),则,
因此
又由题设B1E⊥A1D,故B1E是异面直线B1C1与A1D的公垂线。
下面求点E的坐标。
因B1E⊥A1D,即
又
联立(1)、(2),解得,,即,。
所以.
(Ⅱ)由BC⊥AB,BC⊥DB,故BC⊥面ABDE.即BC为四棱锥C-ABDE的高.
下面求四边形ABDE的面积。
因为SABCD=SABE+ SADE,
而SABE=
SBDE=
故SABCD=
所以
20.(本小题12分)
解:设长方体的宽为x(m),则长为2x
(m),高为
.
故长方体的体积为
从而
令V′(x)=0,解得x=0(舍去)或x=1,因此x=1.
当0<x<1时,V′(x)>0;当1<x<时,V′(x)<0,
故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值。
从而最大体积V=V′(x)=9×12-6×13(m3),此时长方体的长为2 m,高为1.5 m.
答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3 m3。
21.(本小题12分)
(Ⅰ)解:设抛物线的标准方程为,则,从而
因此焦点的坐标为(2,0).
又准线方程的一般式为。
从而所求准线l的方程为。
答(21)图
(Ⅱ)解法一:如图(21)图作AC⊥l,BD⊥l,垂足为C、D,则由抛物线的定义知
|FA|=|FC|,|FB|=|BD|
记A、B的横坐标分别为xxxz,则
|FA|=|AC|=解得,
类似地有,解得。
记直线m与AB的交点为E,则
所以。
故。
解法二:设
2006上海高考数学试题答案理科
广西成考网分享:广西成人高考专升本高等数学一考试真题及参考答案
一、选择题:1~10小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.
1.
A.2/3 B.1 C.3/2 D.3
答案:C
2.设函数y=2x+sinx,则y/=
A.1-cosx B.1+cosx C.2-cosx D.2+cosx
答案:D
3.设函数y=ex-2,则dy=
A.ex-3dx B.ex-2dx C.ex-1dx D.exdx
答案:B
4.设函数y=(2+x)3,则y/=
A.(2+x)2 B.3(2+x)2 C.(2+x)4 D.3(2+x)4
答案:B
5.设函数y=3x+1,则y/=
A.0 B.1 C.2 D.3
答案:A
6.
A.ex B.ex-1 C.ex-1 D.ex+1
答案:A
7.
A.2x2+C B.x2+C C.1/2x2+C D.x+C
答案:C
8.
A.1/2 B.1 C.2 D.3
答案:C
9.设函数z=3x2y,则αz/αy=
A.6y B.6xy C.3x D.3X2
答案:D
10.
A.0 B.1 C.2 D.+∞
答案:B
二、填空题:11~20小题,每小题4分,共40分.把答案填在题中横线上.
11.
答案:e2
12.设函数y=x3,则y/=
答案:3x2
13.设函数y=(x-3)4,则dy=
答案:4(x-3)3dx
14.设函数y=sin(x-2),则y"=
答案:-sin(x-2)
15.
答案:1/2ln|x|+C
16.
答案:0
17.过坐标原点且与直线(x-1)/3=(y+1)/2+(z-3)/-2垂直的平面方程为
答案:3x+2y-2z=0
18.设函数x=3x+y2,则dz=
答案:3dx+2ydy
19.微分方程y/=3x2的通解为y=
答案:x3+C
20.
答案:2
三、解答题:21-28题,共70分。解答应写出推理、演算步骤。
21.(本题满分8分)
22.(本题满分8分)
23.(本题满分8分)
求曲线y=x3-3x+5的拐点。
解:y/=3x2-3,y"=6x
令y"=0,解得x=0
当x<0时,y"0时,y">0
当x=0是,y=5
因此,点(0,5)为所给曲线的拐点
24.(本题满分8分)
25.(本题满分8分)
26.(本题满分10分)
设D为曲线y=x2与直线y=x所围成的有界平面图形,求D饶x轴旋转一周所得旋转体的体积V。
以上就是关于广西成人高考专升本高等数学一考试真题及参考答案的相关内容,考生如果想获取更多关于广西成人高考信息,如成考答疑、报考指南、成绩查询、历年真题、学习方法、广西成考专升本试题题库等,敬请关注广西成考网。
专升本有疑问、不知道如何总结专升本考点内容、不清楚专升本报名当地政策,点击底部咨询官网,免费领取复习资料:上海数学(理工农医类)参考答案
一、(第1题至笫12题)
1. 1 2. 3. 4. 5. -1+i 6. 7.
8. 5 9. 10. 36 11. k=0,-1<b<1 12. a≤10
二、(第13题至笫16题)
13. C 14. A 15. A 16. D
三、(第17题至笫22题)
17.解:y=cos(x+ ) cos(x- )+ sin2x
=cos2x+ sin2x=2sin(2x+ )
∴函数y=cos(x+ ) cos(x- )+ sin2x的值域是[-2,2],最小正周期是π.
18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.
于是,BC=10 .
∵ , ∴sin∠ACB= ,
∵∠ACB<90° ∴∠ACB=41°
∴乙船应朝北偏东71°方向沿直线前往B处救援.
19.解:(1) 在四棱锥P-ABCD中,由PO⊥平面ABCD,得
∠PBO是PB与平面ABCD所成的角, ∠PBO=60°.
在Rt△AOB中BO=ABsin30°=1, 由PO⊥BO,
于是,PO=BOtg60°= ,而底面菱形的面积为2 .
∴四棱锥P-ABCD的体积V= ×2 × =2.
(2)解法一:以O为坐标原点,射线OB、OC、OP分别为x轴、y轴、z轴的正半轴建立空间直角坐标系.
在Rt△AOB中OA= ,于是,点A、B、D、P的坐标分别是A(0,- ,0),
B(1,0,0),D(-1,0,0)P(0,0, ).
E是PB的中点,则E( ,0, ) 于是 =( ,0, ), =(0, , ).
设 的夹角为θ,有cosθ= ,θ=arccos ,
∴异面直线DE与PA所成角的大小是arccos .
解法二:取AB的中点F,连接EF、DF.
由E是PB的中点,得EF‖PA,
∴∠FED是异面直线DE与PA所成角(或它的补角).
在Rt△AOB中AO=ABcos30°= =OP,
于是, 在等腰Rt△POA中,PA= ,则EF= .
在正△ABD和正△PBD中,DE=DF= .
cos∠FED= =
∴异面直线DE与PA所成角的大小是arccos .
20.证明:(1)设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x12,y2).
当直线l的钭率下存在时,直线l的方程为x=3,此时,直线l与抛物线相交于点A(3, )、B(3,- ).∴ =3
当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0.
当 y2=2x
得ky2-2y-6k=0,则y1y2=-6.
y=k(x-3)
又∵x1= y , x2= y ,
∴ =x1x2+y1y2= =3.
综上所述, 命题“如果直线l过点T(3,0),那么 =3”是真命题.
(2)逆命题是:设直线l交抛物线y2=2x于A、B两点,如果 =3,那么该直线过点T(3,0).该命题是假命题.
例如:取抛物线上的点A(2,2),B( ,1),此时 =3,
直线AB的方程为Y= (X+1),而T(3,0)不在直线AB上.
说明:由抛物线y2=2x上的点A(x1,y1)、B(x12,y2)满足 =3,可得y1y2=-6.
或y1y2=2,如果y1y2=-6.,可证得直线AB过点(3,0);如果y1y2=2, 可证得直线AB过点(-1,0),而不过点(3,0).
21.证明(1)当n=1时,a2=2a,则 =a;
2≤n≤2k-1时, an+1=(a-1) Sn+2, an=(a-1) Sn-1+2,
an+1-an=(a-1) an, ∴ =a, ∴数列{an}是等比数列.
解(2)由(1)得an=2a , ∴a1a2…an=2 a =2 a =a ,
bn= (n=1,2,…,2k).
(3)设bn≤ ,解得n≤k+ ,又n是正整数,于是当n≤k时, bn< ;
当n≥k+1时, bn> .
原式=( -b1)+( -b2)+…+( -bk)+(bk+1- )+…+(b2k- )
=(bk+1+…+b2k)-(b1+…+bk)
= = .
当 ≤4,得k2-8k+4≤0, 4-2 ≤k≤4+2 ,又k≥2,
∴当k=2,3,4,5,6,7时,原不等式成立.
22.解(1) 函数y=x+ (x>0)的最小值是2 ,则2 =6, ∴b=log29.
(2)设0<x1<x2,y2-y1= .
当 <x1<x2时, y2>y1, 函数y= 在[ ,+∞)上是增函数;
当0<x1<x2< 时y2<y1, 函数y= 在(0, ]上是减函数.
又y= 是偶函数,于是,该函数在(-∞,- ]上是减函数, 在[- ,0)上是增函数.
(3)可以把函数推广为y= (常数a>0),其中n是正整数.
当n是奇数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,
在(-∞,- ]上是增函数, 在[- ,0)上是减函数.
当n是偶数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,
在(-∞,- ]上是减函数, 在[- ,0)上是增函数.
F(x)= +
=
因此F(x) 在 [ ,1]上是减函数,在[1,2]上是增函数.
所以,当x= 或x=2时, F(x)取得最大值( )n+( )n;
当x=1时F(x)取得最小值2n+1.
图画不到。