您现在的位置是: 首页 > 教育政策 教育政策

2017湖南高考答案数学_2017年湖南高考数学答案

tamoadmin 2024-05-23 人已围观

简介1.湖南数学高考试卷2023难度1、湖南高考试卷总分为750分,其中语文科目满分150分;数学科目满分150分;英语科目满分150分;文综和理综各自均为300分。2、注意先易后难的答题技巧:其实这个技巧大家都知道,但是你知道为什么要这么做吗?我们都知道难题的解答有一个酝酿的过程,酝酿在心理学中也有定义,指的是潜意识中对信息的加工,也就是说不需要你有意识的努力,你就能得到答案。为了节省时间,你可以按

1.湖南数学高考试卷2023难度

2017湖南高考答案数学_2017年湖南高考数学答案

1、湖南高考试卷总分为750分,其中语文科目满分150分;数学科目满分150分;英语科目满分150分;文综和理综各自均为300分。

2、注意先易后难的答题技巧:其实这个技巧大家都知道,但是你知道为什么要这么做吗?我们都知道难题的解答有一个酝酿的过程,酝酿在心理学中也有定义,指的是潜意识中对信息的加工,也就是说不需要你有意识的努力,你就能得到答案。为了节省时间,你可以按照顺序去做选择题,再遇到比较难的题的时候,稍微的思考一下,如果没有答案就跳过去,看下一个题,等到简单题都做完了,再返回来去做难题,这时候,有了一段酝酿的时间,你就比较容易的想到难题的答案了,节省了你宝贵的时间。

3、注意规定选择题的答题时间:不要无限制的针对一个题去死扣,你会浪费大量的时间。根据自己的能力去规定一个时间,最难的题要花费多长时间,最简单的题要花费多长时间,做完所有的选择题需要多长时间。我们假设你的英语平均分在120分左右,那么你有80%的选择题会做错,假设有十个选择题,那么你要记住,有两个题是会做错的,这时候,你就可以果断的放弃那些不会的题,大大的节约了你的时间。千万不要在不会的题上浪费时间。

4、要不要修改你的答案:在英语选择题的技巧中,大家有一个误解就是说,如果一个题一开始认为是选A,后来检查答案的时候又认为B对,那么你要不要修改答案呢?我们的老师给出的答案是不要修改,但是心理学的研究发现,修改以后的答案正确率更高,也就是说,如果你不知道要不要改成后来的答案,你最好是改了,这样正确的几率更高。但是,为什么坊间会流传说相信第一感觉才是对的,那是因为我们往往能够记住那些修改答案但是做错了的题,而忘记了那些因为修改答案而做对了的题。

5、学会做标记:有些选择题是一看就不会的题,你要用一种符号来标记;有些题是经过思考可以想出来答案的题,但是现在没时间做,只能先跳过去做后面简单的题,你要用另一种符号来标记。做好这两种标记,等到你有一些时间回头做难题的时候你可以快速的决定自己要不要花费几分钟来做这个题,特别难的题就会果断的放弃了。除了给题做标记以外,还要给选项做标记,那些一看就错的答案可以用大大的叉号来表示,这种标记可以帮助你思考问题,将那些无用的信息快速的排出你的大脑内存,这和电脑一样,可以提高运行速度。

6、找到适合自己的涂卡顺序:选择题做完以后要用2B铅笔涂到机读卡上,有的人喜欢做一道题涂一次卡,有的人喜欢做完所有题以后再涂卡。这两种方法后者有优势,因为涂卡会影响你答题的速度,注意力会再不同的任务之间转移,但是这个理论也不是绝对的正确,还要看你适合哪种工作方式,有些人就喜欢在不同的任务间换换脑子。所以,更关键的是找到适合你的方法,然后利用最后的模拟考试练习你的方法。当然,如果你在考试结束的最后几分钟还没有做完选择题,你要做一道题就涂一次卡,否则你可能因为考试结束而没有时间涂卡。

湖南数学高考试卷2023难度

2011年普通高等等学校招生全国统一模拟考试(湖南卷)

数学(理工农医类)

一、 选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 若 a<0, >1,则 (D)

A.a>1,b>0 B.a>1,b<0 C. 0<a<1, b>0 D. 0<a<1, b<0

2.对于非0向时a,b,“a//b”的确良 (A)

A.充分不必要条件 B. 必要不充分条件

C.充分必要条件 D. 既不充分也不必要条件

3.将函数y=sinx的图象向左平移 0 <2 的单位后,得到函数y=sin 的图象,则 等于 (D)

A. B. C. D.

4.如图1,当参数 时,连续函数 的图像分别对应曲线 和 , 则 [ B]

A B

C D

5.从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位 w.w.w.k.s.5.u.c.o.m [ C]

A 85 B 56 C 49 D 28

6. 已知D是由不等式组 ,所确定的平面区域,则圆 在区域D内

的弧长为 [ B]

A B C D

7.正方体ABCD— 的棱上到异面直线AB,C 的距离相等的点的个数为(C)

A.2 B.3 C. 4 D. 5 w.w.w.k.s.5.u.c.o.m

8.设函数 在( ,+ )内有定义。对于给定的正数K,定义函数

取函数 = 。若对任意的 ,恒有 = ,则w.w.w.k.s.5.u.c.o.m

A.K的最大值为2 B. K的最小值为2

C.K的最大值为1 D. K的最小值为1 D

二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上

9.某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_12__

10.在 的展开式中, 的系数为___7__(用数字作答)

11、若x∈(0, )则2tanx+tan( -x)的最小值为2 . w.w.w.k.s.5.u.c.o.m

12、已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为

13、一个总体分为A,B两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本,已知B层中甲、乙都被抽到的概率为 ,则总体中的个数数位 50 。

14、在半径为13的球面上有A , B, C 三点,AB=6,BC=8,CA=10,则w.w.w.k.s.5.u.c.o.m

(1)球心到平面ABC的距离为 12 ;

(2)过A,B两点的大圆面为平面ABC所成二面角为(锐角)的正切值为 3

15、将正⊿ABC分割成 ( ≥2,n∈N)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于⊿ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)= ,…,f(n)= (n+1)(n+2)

三.解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)

在 ,已知 ,求角A,B,C的大小。

解:设

由 得 ,所以

又 因此 w.w.w.k.s.5.u.c.o.m

由 得 ,于是

所以 , ,因此

,既

由A= 知 ,所以 , ,从而

或 ,既 或 故

或 。

17.(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的. 、 、 ,现在3名工人独立地从中任选一个项目参与建设。w.w.w.k.s.5.u.c.o.m

(I)求他们选择的项目所属类别互不相同的概率;

(II)记 为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。

解:记第1名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件 , , ,i=1,2,3.由题意知 相互独立, 相互独立, 相互独立, , , (i,j,k=1,2,3,且i,j,k互不相同)相互独立,且P( )=,P( )= ,P( )=

(1) 他们选择的项目所属类别互不相同的概率

P=3!P( )=6P( )P( )P( )=6 =

(2) 解法1 设3名工人中选择的项目属于民生工程的人数为 ,由己已知, -B(3, ),且 =3 。

所以P( =0)=P( =3)= = ,

P( =1)=P( =2)= = w.w.w.k.s.5.u.c.o.m

P( =2)=P( =1)= =

P( =3)=P( =0)= =

故 的分布是

0 1 2 3

P

的数学期望E =0 +1 +2 +3 =2

解法2 第i名工人选择的项目属于基础工程或产业工程分别为事件 ,

i=1,2,3 ,由此已知, ?D, 相互独立,且

P( )-( , )= P( )+P( )= + =

所以 -- ,既 , w.w.w.k.s.5.u.c.o.m

故 的分布列是

1 2 3

18.(本小题满分12分)

如图4,在正三棱柱 中,

D是 的中点,点E在 上,且 。

(I) 证明平面 平面

(II) 求直线 和平面 所成角的正弦值。w.w.w.k.s.5.u.c.o.m

解 (I) 如图所示,由正三棱柱 的性质知 平面

又DE 平面A B C ,所以DE AA .

而DE AE。AA AE=A 所以DE 平面AC C A ,又DE 平面ADE,故平面ADE 平面AC C A 。

(2)解法1 如图所示,设F使AB的中点,连接DF、DC、CF,由正三棱柱ABC- A B C 的性质及D是A B的中点知A B C D, A B DF w.w.w.k.s.5.u.c.o.m

又C D DF=D,所以A B 平面C DF,

而AB∥A B,所以

AB 平面C DF,又AB 平面ABC,故

平面AB C 平面C DF。

过点D做DH垂直C F于点H,则DH 平面AB C 。w.w.w.k.s.5.u.c.o.m

连接AH,则 HAD是AD和平面ABC 所成的角。

由已知AB= A A ,不妨设A A = ,则AB=2,DF= ,D C = ,

C F= ,AD= = ,DH= = — ,

所以 sin HAD= = 。

即直线AD和平面AB C 所成角的正弦值为 。

解法2 如图所示,设O使AC的中点,以O为原点建立空间直角坐标系,不妨设

A A = ,则AB=2,相关各点的坐标分别是

A(0,-1,0), B( ,0,0), C (0,1, ), D( ,- , )。

易知 =( ,1,0), =(0,2, ), =( ,- , )w.w.w.k.s.5.u.c.o.m

设平面ABC 的法向量为n=(x,y,z),则有

解得x=- y, z=- ,

故可取n=(1,- , )。

所以, (n? )= = = 。

由此即知,直线AD和平面AB C 所成角的正弦值为 。

19.(本小题满分13分)

某地建一座桥,两端的桥墩已建好,这两墩相距 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为 米的相邻两墩之间的桥面工程费用为 万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为 万元。

(Ⅰ)试写出 关于 的函数关系式;

(Ⅱ)当 =640米时,需新建多少个桥墩才能使 最小?

解 (Ⅰ)设需要新建 个桥墩,

所以

(Ⅱ) 由(Ⅰ)知,

令 ,得 ,所以 =64

当0< <64时 <0, 在区间(0,64)内为减函数;w.w.w.k.s.5.u.c.o.m

当 时, >0. 在区间(64,640)内为增函数,

所以 在 =64处取得最小值,此时,

故需新建9个桥墩才能使 最小。

20(本小题满分13分)

在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和w.w.w.k.s.5.u.c.o.m

(Ⅰ)求点P的轨迹C;

(Ⅱ)设过点F的直线I与轨迹C相交于M,N两点,求线段MN长度的最大值。

解(Ⅰ)设点P的坐标为(x,y),则 3︳x-2︳

由题设

当x>2时,由①得

化简得

当 时 由①得

化简得

故点P的轨迹C是椭圆 在直线x=2的右侧部分与抛物线 在直线x=2的左侧部分(包括它与直线x=2的交点)所组成的曲线,参见图1

(Ⅱ)如图2所示,易知直线x=2与 , 的交点都是A(2, ),

B(2, ),直线AF,BF的斜率分别为 = , = .

当点P在 上时,由②知

. ④

当点P在 上时,由③知w.w.w.k.s.5.u.c.o.m

若直线l的斜率k存在,则直线l的方程为

(i)当k≤ ,或k≥ ,即k≤-2 时,直线I与轨迹C的两个交点M( , ),N( , )都在C 上,此时由④知

∣MF∣= 6 - ∣NF∣= 6 - w.w.w.k.s.5.u.c.o.m

从而∣MN∣= ∣MF∣+ ∣NF∣= (6 - )+ (6 - )=12 - ( + )

由 得 则 , 是这个方程的两根,所以 + = *∣MN∣=12 - ( + )=12 -

因为当

w.w.w.k.s.5.u.c.o.m

当且仅当 时,等号成立。

(2)当 时,直线L与轨迹C的两个交点 分别在 上,不妨设点 在 上,点 上,则④⑤知,

设直线AF与椭圆 的另一交点为E

所以 。而点A,E都在 上,且

有(1)知 w.w.w.k.s.5.u.c.o.m

若直线 的斜率不存在,则 = =3,此时

综上所述,线段MN长度的最大值为

21.(本小题满分13分)

对于数列 若存在常数M>0,对任意的 ,恒有

w.w.w.k.s.5.u.c.o.m

则称数列 为B-数列

(1) 首项为1,公比为 的等比数列是否为B-数列?请说明理由;

请以其中一组的一个论断条件,另一组中的一个论断为结论组成一个命题

判断所给命题的真假,并证明你的结论;

(2) 设 是数列 的前 项和,给出下列两组论断;

A组:①数列 是B-数列 ②数列 不是B-数列

B组:③数列 是B-数列 ④数列 不是B-数列

请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题。

判断所给命题的真假,并证明你的结论;

(3) 若数列 都是 数列,证明:数列 也是 数列。

解(1)设满足题设的等比数列为 ,则 ,于是

因此| - |+| - |+…+| - |=

因为 所以 即w.w.w.k.s.5.u.c.o.m

故首项为1,公比为 的等比数列是B-数列。

(2)命题1:若数列 是B-数列,则数列 是B-数列

次命题为假命题。

事实上,设 ,易知数列 是B-数列,但

由 的任意性知,数列 是B-数列此命题为。

命题2:若数列 是B-数列,则数列 是B-数列

此命题为真命题

事实上,因为数列 是B-数列,所以存在正数M,对任意的 有

w.w.w.k.s.5.u.c.o.m

即 。于是

所以数列 是B-数列。

(III)若数列 { }是 数列,则存在正数 ,对任意的 有

注意到

同理: w.w.w.k.s.5.u.c.o.m

记 ,则有

因此

+

故数列 是 数列w.w.w.k.s.5.u.c.o.m

2023湖南高考数学试题总体来说不难。

湖南高考数学试卷总体来说不难,今年试题易中难的比例有所调整,如果说去年是5:3:2的话,那么今年试题易中难的比例约为4:3:3,基础试题的分值约有60分。单选题的前6题,多选题的前两题,填空题的14题、解答题的前4题的第一问均可视为基础题。

2023湖南高考数学试卷难度单单从试卷的试题本身来说,这个和每个人的知识点掌握程度和擅长的题目类型有关系,还和个人的临场发挥有关联,高考考生现场状态非常重要。

一、考试难度:

1、2023年湖南高考数学难度与往年相比较难,湖南省教育厅对高考命题有一定的要求,要求试卷难度与全国高考保持一致。

2、2023年数学高考试题是由专门的出题组研发,以考查学生的思维能力和解决问题的能力。在考试内容方面,将基础知识和综合应用相结合,设置了综合运用,解决实际问题等多个考点。整个试卷难度大,需要学生具备较高的数学素养和综合能力。

二、试题类型:

1、2023年湖南高考数学试题类型全面,涉及了初中和高中各个阶段的数学知识。试卷中既有选择题,也有填空题和解答题,还包括了实际应用题。

2、选择题难度相对较低,但需要考生对数学基本概念和常用公式掌握得非常熟练,否则很难做好。填空题和解答题难度较大,需要考生综合应用数学知识进行分析和求解,且需注意解题方法和思路。而实际应用题则更加注重对数学知识的综合运用。

三、面对策略:

1、面对较难的数学试题,考生需要提前进行充分准备和备考,首先需要全面深入的复习基础知识,如函数、导数、积分等,打牢基础后再去攻克难关。

2、要注重实战演练和模拟考试,熟悉试题类型和出题风格,培养应试技巧,提高答题速度和准确率,还需多看一些数学竞赛资料,加强对数学知识的拓展和延伸,积极参加数学比赛,锻炼自己的数学思维和能力。

3、总的来说,2023年湖南高考数学试卷难度相对较大,需要考生具备扎实的基础知识,良好的数学思维和综合能力。为了备战高考,考生应该充分准备,提高自身素质,积极备战,迎接挑战,同时教育部门也应该不断完善高考制度,为广大考生创造公平公正的考试环境。

文章标签: # 数列 # s.5 # 平面