您现在的位置是: 首页 > 教育研究 教育研究
高考函数题型及答案解析,高考函数考纲
tamoadmin 2024-05-21 人已围观
简介这是考纲,泰勒公式不会直接考,但是应用这个公式,可能能更顺利解决相关问题,望采纳,不懂得再问。 、函数、极限和连续 (一)函数 (1)理解函数的概念:函数的定义,函数的表示法,分段函数。 (2)理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。 (3)了解反函数:反函数的定义,反函数的图象。 (4)掌握函数的四则运算与复合运算。 (5)理解和掌握基本初等函数:幂函数,指数函
这是考纲,泰勒公式不会直接考,但是应用这个公式,可能能更顺利解决相关问题,望采纳,不懂得再问。
、函数、极限和连续 (一)函数 (1)理解函数的概念:函数的定义,函数的表示法,分段函数。 (2)理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。 (3)了解反函数:反函数的定义,反函数的图象。 (4)掌握函数的四则运算与复合运算。 (5)理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。 (6)了解初等函数的概念。 (二)极限 (1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 (2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则。 (3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。 (4)掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。 (5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。 (6)熟练掌握用两个重要极限求极限的方法。(三)连续 (1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类。 (2)掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型。 (3)掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。 (4)理解初等函数在其定义区间上连续,并会利用连续性求极限。 二、一元函数微分学 (一)导数与微分 (1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。 (2)会求曲线上一点处的切线方程与法线方程。 (3)熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。 (4)掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。 (5)理解高阶导数的概念,会求简单函数的n阶导数。 (6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。 (二)中值定理及导数的应用 (1)了解罗尔中值定理、拉格朗日中值定理及它们的几何意义。 (2)熟练掌握洛必达法则求“0/0”、“∞/ ∞”、“0?∞”、“∞-∞”、“1∞”、“00”和“∞0”型未定式的极限方法。 (3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式。 (4)理解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并且会解简单的应用问题。 (5)会判定曲线的凹凸性,会求曲线的拐点。 (6)会求曲线的水平渐近线与垂直渐近线。 三、一元函数积分学 (一)不定积分 (1)理解原函数与不定积分概念及其关系,掌握不定积分性质,了解原函数存在定理。 (2)熟练掌握不定积分的基本公式。 (3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。 (4)熟练掌握不定积分的分部积分法。 (二)定积分 (1)理解定积分的概念与几何意义,了解可积的条件。 (2)掌握定积分的基本性质。 (3)理解变上限的定积分是变上限的函数,掌握变上限定积分求导数的方法。 (4)掌握牛顿—莱布尼茨公式。 (5)掌握定积分的换元积分法与分部积分法。 (6)理解无穷区间广义积分的概念,掌握其计算方法。 (7)掌握直角坐标系下用定积分计算平面图形的面积。 四、向量代数与空间解析几何 (一)向量代数 (1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。 (2)掌握向量的线性运算、向量的数量积与向量积的计算方法。 (3)掌握二向量平行、垂直的条件。 (二)平面与直线 (1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。 (2)会求点到平面的距离。 (3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。 (4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。 五、多元函数微积分 (一)多元函数微分学 (1)了解多元函数的概念、二元函数的几何意义及二元函数的极值与连续概念(对计算不作要求)。会求二元函数的定义域。 (2)理解偏导数、全微分概念,知道全微分存在的必要条件与充分条件。 (3)掌握二元函数的一、二阶偏导数计算方法。 (4)掌握复合函数一阶偏导数的求法。 (5)会求二元函数的全微分。 (6)掌握由方程F(x,y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法。 (7)会求二元函数的无条件极值。 (二)二重积分 (1)理解二重积分的概念、性质及其几何意义。 (2)掌握二重积分在直角坐标系及极坐标系下的计算方法。 六、无穷级数 (一)数项级数 (1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。 (2)掌握正项级数的比值数别法。会用正项级数的比较判别法。 (3)掌握几何级数、调和级数与p级数的敛散性。 (4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。 (二)幂级数 (1)了解幂级数的概念,收敛半径,收敛区间。 (2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。 (3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。 七、常微分方程 (一)一阶微分方程 (1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。 (2)掌握可分离变量方程的解法。 (3)掌握一阶线性方程的解法。 (二)二阶线性微分方程 (1)了解二阶线性微分方程解的结构。 (2)掌握二阶常系数齐次线性微分方程的解法。
三角函数的概念、性质和图象
1. 理解弧度的意义,并能正确进行弧度和角度的换算.
2. 掌握任意角的三角函数的定义、三角函数的符号、特殊角的三角函数值、三角函数的性质、同角三角函数的关系式与诱导公式,了解周期函数和最小正周期的意义.会求y =A sin(ωx +?) 的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,能运用上述三角公式化简三角函数式,求任意角的三角函数值与证明较简单的三角恒等式.
3. 了解正弦、余弦、正切、余切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数y =A sin(ωx +?) 的简图,并能解决与正弦曲线有关的实际问题.
4. 正弦函数、余弦函数的对称轴,对称点的求法。
5.形如y =sin x +cos y 或y =sin x -cos y 的辅助角的形式,求最大、最小值的总题。
6.同一问题中出现sin x +cos x , sin x -cos y , sin x ?cos y ,求它们的范围。如求y =sin x +cos y +sin x ?cos y 的值域。
7.已知正切值,求正弦、余弦的齐次式的值。
如已知tan x =2, 求sin 2x +2sin x ?cos y +cos 2y +4的
8 正弦定理:a b c ===2R (R 为三角形外接圆的半径)
sin A swinB sin C
a :b :c =s i n A :s i n B :s i n C
b 2+c 2-a 2
余弦定理:a =b +c -2ab cos A ,…cos A =2ab 222
可归纳为表9-1.
表9-1 三角函数的图象三、主要内容及典型题例
三角函数是六个基本初等函数之一,三角函数的知识包括三角函数的定义、图象、性质、三角函数线、同角三角函数的关系式与诱导公式,以及两角和与差的
降次公式等。
1. 三角函数的图象与性质和性质
2. 三角函数作为基本初等函数,它必然具备函数的共性;作为个体,它又具有自身的个性特点.例如周期性、弦函数的有界性,再如三角函数的单调性,具有分段单调的特征.通过复习对这些特性必须很好掌握,其中三角函数的周期性是高考中出现频率最高的试题.根据《考纲》的要求,只需要会求经过简单的恒等变形可化为正弦、余弦、正切、余切函数及y =A sin(ωx + ) 等形式的三角函数的周期,不必去研究周期函数的和、差、积、商的函数的周期.
看一看历年来高考中出现的求三角函数周期的考题(例1),你应该对复习的要求有个基本的了解.
例1 求下列三角函数的周期.(根据历年全国高考有关考题(填空、选择题)
改编
注意 理解函数周期这个概念,要注意不是所有的周期函数都有最小正周期,如常函数f (x ) =c (c 为常数)是周期函数,其周期是异于零的实数,但没有最小正周期.
3. 弦函数的有界性:|sinx |≤1,|cosx |≤1在解题中有着广泛的应用,忽视这一性质,常会出现错误。
例3 求下列函数的值域:
解法2 令t =sin x ,则f (t ) =-t +t +1,∵ |sinx |≤1, ∴ |t |≤1. 问题转化为求关于t 的二次函数f (t ) 在闭区间[-1,1]上的最值.
2
本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。
5. “去负——脱周——化锐”,是对三角函数式进行角变换的基本思路.即利用三角函数的奇偶性将负角的三角函数变为正角的三角函数——去负;利用三角函数的周期性将任
意角的三角函数化为角度在区间[0,360) 或[0,180) 内的三角函数——脱周;利用诱导公式将上述三角函数化为锐角三角函数——化锐.
同角三角函数之间的三种关系:
(1)倒数关系:(2)商数关系: (3)平方关系:
o o o o
是进行三角式化简的最基本的公式,必须熟练掌握.
其中九组三角诱导公式的规律可简记为:奇变偶不变,符号看象限.此外在应用时,不............论.α.取.什.么.值.,.我.们.始.终.视.α.为.锐.角...否则,将导致错误。
6. 三角函数的图象、单位图以及三角函数线,为我们提供了数形结合的解题方法,在解题中有着广泛的应用,应引起足够的重视.
7. 在函数y =A sin(ωx +?) +k (A >0, ω>0) 中,A 和ω确定函数图象的形状,?和k 确定图象的位置.
作函数y =A sin(ωx +?) +k 的图象,既可用“五点法”,也可用图象变换的方法.图象的基本变换有振幅变换、周期变换,以及相位变换(左、右平移)和上下平移,前两种变换是伸缩变换,后两种变换是平移变换.
对函数y =A sin(ωx +?) +k (A >0, 0, ≠0, k≠0) , 其图象的基本变换有: ....ω.>...?........
(1)振幅变换(纵向伸缩变换):是由A 的变化引起的.A >1, 伸长;A <1, 缩短.
(2)周期变换(横向伸缩变换) :是由ω的变化引起的.ω>1,缩短;ω<1, 伸长.
(3)相位变换(横向平移变换) :是由φ的变化引起的.?>0, 左移;?<0,右移.
(4)上下平移(纵向平移变换): 是由k 的变化引起的.k >0, 上移;k <0, 下移
于是,本题的答案为②、③.
评析 本例所用的方法带有普遍性,用来解有关函数y =A sin (ωx + )的图象是十分奏效的。