您现在的位置是: 首页 > 教育研究 教育研究

2017年陕西高考文科数学,2017数学陕西省高考

tamoadmin 2024-07-26 人已围观

简介1.2017年高考理科数学22题。 第二问最后一步怎么求的a的值?其余步骤我都 等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是我为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。  高中数学知识点:等差数列公式  等差数列公式an=a1+(n-1)d  a1为首项,an为第n项

1.2017年高考理科数学22题。 第二问最后一步怎么求的a的值?其余步骤我都

2017年陕西高考文科数学,2017数学陕西省高考

 等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是我为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。

 高中数学知识点:等差数列公式

 等差数列公式an=a1+(n-1)d

 a1为首项,an为第n项的通项公式,d为公差

 前n项和公式为:Sn=na1+n(n-1)d/2

 Sn=(a1+an)n/2

 若m+n=p+q则:存在am+an=ap+aq

 若m+n=2p则:am+an=2ap

 以上n.m.p.q均为正整数

 解析:第n项的值an=首项+(项数-1)?公差

 前n项的和Sn=首项?n+项数(项数-1)公差/2

 公差d=(an-a1)?(n-1)

 项数=(末项-首项)?公差+1

 数列为奇数项时,前n项的和=中间项?项数

 数列为偶数项,求首尾项相加,用它的和除以2

 等差中项公式2an+1=an+an+2其中{an}是等差数列

 通项公式:公差?项数+首项-公差

 高中数学知识点:等差数列求和公式

 若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:

 S=(a1+an)n?2

 即(首项+末项)?项数?2

 前n项和公式

 注意:n是正整数(相当于n个等差中项之和)

 等差数列前N项求和,实际就是梯形公式的妙用:

 上底为:a1首项,下底为a1+(n-1)d,高为n。

 即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。

 高中数学知识点:推理过程

 设首项为 , 末项为 , 项数为 , 公差为 , 前 项和为 , 则有:

 当d?0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。

 注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。

 求和推导

 证明:由题意得:

 Sn=a1+a2+a3+。。。+an①

 Sn=an+a(n-1)+a(n-2)+。。。+a1②

 ①+②得:

 2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)

 Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2

 Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)

 基本公式

 公式 Sn=(a1+an)n/2

 等差数列求和公式

 Sn=na1+n(n-1)d/2; (d为公差)

 Sn=An2+Bn; A=d/2,B=a1-(d/2)

 和为 Sn

 首项 a1

 末项 an

 公差d

 项数n

 表示方法

 等差数列基本公式:

 末项=首项+(项数-1)?公差

 项数=(末项-首项)?公差+1

 首项=末项-(项数-1)?公差

 和=(首项+末项)?项数?2

 差:首项+项数?(项数-1)?公差?2

 说明

 末项:最后一位数

 首项:第一位数

 项数:一共有几位数

 和:求一共数的总和

 本段通项公式

 首项=2?和?项数-末项

 末项=2?和?项数-首项

 末项=首项+(项数-1)?公差:a1+(n-1)d

 项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1

 公差= d=(an-a1)/n-1

 如:1+3+5+7+99 公差就是3-1

 将a1推广到am,则为:

 d=(an-am)/n-m

 基本性质

 若 m、n、p、q?N

 ①若m+n=p+q,则am+an=ap+aq

 ②若m+n=2q,则am+an=2aq(等差中项)

2017年高考理科数学22题。 第二问最后一步怎么求的a的值?其余步骤我都

 平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。以下是我为您整理的关于2017年高考数学平面向量必考知识点的相关资料,希望对您有所帮助。

 高考数学必考知识点平面向量概念:

 (1)向量:既有大小又有方向的量。向量不能比较大小,但向量的模可以比较大小。

 (2)零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行。

 (3)单位向量:模为1个单位长度的向量

 (4)平行向量:方向相同或相反的非零向量

 (5)相等向量:长度相等且方向相同的向量

 高考数学必考知识点平面向量数量积解析

 1、平面向量数量积:已知两个非零向量a、b,那么|a||b|cos?(?是a与b的夹角)叫做a与b的数量积或内积,记作a?b。零向量与任意向量的数量积为0。数量积a?b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos?的乘积。

 两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a?b=x1?x2+y1?y2

 2、平面向量数量积具有以下性质:

 1、a?a=|a|2?0

 2、a?b=b?a

 3、k(a?b)=(ka)b=a(kb)

 4、a?(b+c)=a?b+a?c

 5、a?b=0<=>a?b

 6、a=kb<=>a//b

 7、e1?e2=|e1||e2|cos?

 高考数学必考知识点平面向量加法解析

 已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。

 注:向量的加法满足所有的加法运算定律,如:交换律、结合律。

 高考数学必考知识点平面向量减法解析

 1、AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、指被减。

 -(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。

 平面向量公式汇总

 1、定点

 定点公式(向量P1P=?向量PP2)

 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 ?,使 向量P1P=?向量PP2,?叫做点P分有向线段P1P2所成的比。

 若P1(x1,y1),P2(x2,y2),P(x,y),则有

 OP=(OP1+?OP2)(1+?);(定点向量公式)

 x=(x1+?x2)/(1+?),

 y=(y1+?y2)/(1+?)。(定点坐标公式)

 我们把上面的式子叫做有向线段P1P2的定点公式

 2、三点共线定理

 若OC=?OA +?OB ,且?+?=1 ,则A、B、C三点共线

 三角形重心判断式

 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

 [编辑本段]向量共线的重要条件

 若b?0,则a//b的重要条件是存在唯一实数?,使a=?b。

 a//b的重要条件是 xy'-x'y=0。

 零向量0平行于任何向量。

 [编辑本段]向量垂直的充要条件

 a?b的充要条件是 a?b=0。

 a?b的充要条件是 xx'+yy'=0。

 零向量0垂直于任何向量.

 设a=(x,y),b=(x',y')。

 3、向量的加法

 向量的加法满足平行四边形法则和三角形法则。

 AB+BC=AC。

 a+b=(x+x',y+y')。

 a+0=0+a=a。

 向量加法的运算律:

 交换律:a+b=b+a;

 结合律:(a+b)+c=a+(b+c)。

 4、向量的减法

 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

 AB-AC=CB. 即?共同起点,指向被减?

 a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

 5、数乘向量

 实数?和向量a的乘积是一个向量,记作?a,且∣?a∣=∣?∣?∣a∣。

 当?>0时,?a与a同方向;

 当?<0时,?a与a反方向;

 当?=0时,?a=0,方向任意。

 当a=0时,对于任意实数?,都有?a=0。

 注:按定义知,如果?a=0,那么?=0或a=0。

 实数?叫做向量a的系数,乘数向量?a的几何意义就是将表示向量a的有向线段伸长或压缩。

 当∣?∣>1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上伸长为原来的∣?∣倍;

 当∣?∣<1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上缩短为原来的∣?∣倍。

 数与向量的乘法满足下面的运算律

 结合律:(?a)?b=?(a?b)=(a?b)。

 向量对于数的分配律(第一分配律):(?+?)a=?a+?a.

 数对于向量的分配律(第二分配律):?(a+b)=?a+?b.

 数乘向量的消去律:① 如果实数?0且?a=?b,那么a=b。② 如果a?0且?a=?a,那么?=?。

 6、向量的的数量积

 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0?〈a,b〉?

 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。

 向量的数量积的坐标表示:a?b=x?x'+y?y'。

 向量的数量积的运算律

 a?b=b?a(交换律);

 (?a)?b=?(a?b)(关于数乘法的结合律);

 (a+b)?c=a?c+b?c(分配律);

 向量的数量积的性质

 a?a=|a|的平方。

 a?b 〈=〉a?b=0。

 |a?b|?|a|?|b|。

 7、向量的数量积与实数运算的主要不同点

 (1)向量的数量积不满足结合律,即:(a?b)?c?a?(b?c);例如:(a?b)^2?a^2?b^2。

 (2)向量的数量积不满足消去律,即:由 a?b=a?c (a?0),推不出 b=c。

 (3)|a?b|?|a|?|b|

 (4)由 |a|=|b| ,推不出 a=b或a=-b。

 8、向量的向量积

 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a?b。若a、b不共线,则a?b的模是:∣a?b∣=|a|?|b|?sin〈a,b〉;a?b的方向是:垂直于a和b,且a、b和a?b按这个次序构成右手系。若a、b共线,则a?b=0。

 (1)向量的向量积性质:

 ∣a?b∣是以a和b为边的平行四边形面积。

 a?a=0。

 a‖b〈=〉a?b=0。

 (2)向量的向量积运算律

 a?b=-b?a;

 (?a)?b=?(a?b)=a?(?b);

 (a+b)?c=a?c+b?c.

 注:向量没有除法,?向量AB/向量CD?是没有意义的。

 (3)向量的三角形不等式

 ∣∣a∣-∣b∣∣?∣a+b∣?∣a∣+∣b∣;

 ① 当且仅当a、b反向时,左边取等号;

 ② 当且仅当a、b同向时,右边取等号。

 ∣∣a∣-∣b∣∣?∣a-b∣?∣a∣+∣b∣。

 ① 当且仅当a、b同向时,左边取等号;

3cosa+4sina可以取值+/-5,在第三象限应为-5,因此-5-4-a=+/-17,解得a=-26/8;综合得a=-16,-26,8,18四个值。

参考答案为-16,18.只取第一象限点了

文章标签: # 向量 # an # a1