您现在的位置是: 首页 > 教育研究 教育研究
浙江数学高考题_浙江数学高考题型
tamoadmin 2024-07-22 人已围观
简介1.2018年浙江高考数学试卷试题及答案解析(答案WORD版)2.2011年浙江省高考理科数学第9题讲解3.想知道2011年数学高考试题和答案(浙江卷)4.09浙江高考浙江文科数学答案5.2010年浙江省高考试题:理科数学试卷填空题16题怎么解啊6.2004年数学高考卷浙江理科11题怎么写7.2015年高考浙江数学卷第七题什么意思你好,你说的题目是(文科卷)的第六题:若a,b为实数,则“0<
1.2018年浙江高考数学试卷试题及答案解析(答案WORD版)
2.2011年浙江省高考理科数学第9题讲解
3.想知道2011年数学高考试题和答案(浙江卷)
4.09浙江高考浙江文科数学答案
5.2010年浙江省高考试题:理科数学试卷填空题16题怎么解啊
6.2004年数学高考卷浙江理科11题怎么写
7.2015年高考浙江数学卷第七题什么意思
你好,你说的题目是(文科卷)的第六题:若a,b为实数,则“0<ab<1”是“b<1/a”的(
)理科的第七题多加了或a>1/b
解答:充分条件:
因为0<ab<1仅能说明ab乘积的结果是正数,只能得出a、b同号,即同正同负。
所以无法利用ab<1两边同除以实数a而不改变不等式符号得到b<1/a的结论。当a、b<0时,那么此时的不等号就要改变了。
故不是充分条件。
必要条件:
b<1/a更加无法推断出0<ab<1这个结论了。若a>0时,仅能推出ab<1,无法得到ab>0的下限,再则还有若a<0时,就得出ab>1了,所以在a,b是实数的范围内,根本无法得出0<ab<1。
故也不是必要条件。
所以,最终的结论是:既非充分条件也非必要条件。
希望我的回答,你能够满意。不过在考场答题的时候,最好是选择最简便的最快速的方法来做。
2018年浙江高考数学试卷试题及答案解析(答案WORD版)
浙江卷中的理17题(文19题)的第2小题如下:
题1 如图1,已知椭圆的中心在坐标原点,焦点F1F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|:|A1F1|=2:1.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l1:x=m(|m|>1),P为l1上的动点,使∠F1PF2最大的点P记为Q,求点Q的坐标(用m表示).
1.题源探析
1986年全国高等学校统一招生考试理工类数学第五题如下:
题2 在y轴正向上有两点A(0,a),B(0,b),并且b>a,试在x轴正向上求一点P,使得∠APB最大,如图2.
显然,05年浙江卷中的理17题(文19题)的第2小题是由86年的高考题改变背景后得到的.两题的解法一模一样.
2.变式举例
在历年的高考复习题中,由86年的高考题改编而成的试题也是屡见不鲜,这里举两例加以说明.
题3 在东西向公路l上的点O处正北方向有以A,B两点为端点的一个地段.从公路上P处观察AB地段时,当∠APB越大时,观察效果越好(如图3).设|OA|=a,|OB|=b,(a>b),则为取得最好的观察效果,观察点P应设在公路l的何处?
题4 如图4,在足球比赛中,甲方边锋从乙方球门附近带球过人,沿直线l向前推进,试问:该边锋在距乙方底线多远处起脚射门,射门的角度最大.(注:图4中AB表示乙方的球门,AB所在直线为乙方底线,l表示甲方边锋推进的路线,C为甲方边锋推进时的某一位置,|AD|=a,|BD|=b(a>b)).
3.简解赏析
上述问题一般用代数法,即通过计算所求角的正切值,建立一个函数关系式求解问题.其实从几何角度思考,解法会更简单,下面我们该出该题的几何解.
解:先考虑x轴上方l1上满足条件的点P.
如图5,以F1F2为弦作圆切l1于点Q,设P为l1上异于Q的任意一点,由于同弧的圆周角大于园外角,有∠F1QF2>∠F1PF2,即Q为所求点.
根据切割线定理有QD2=(m-1)(m+1)=m2-1,所以QD=.所以Q(m, )
根据对称性,在x轴下方有点Q(m, -).
说明:设y轴与l1的距离为d,以F2为圆心d为半径作圆交y轴于点o′,再以o′为圆心,d为半径作圆,则圆o′即为切l1于点Q,过F1,F2点的圆.
2011年浙江省高考理科数学第9题讲解
2018年浙江高考数学试卷试题及答案解析(答案WORD版)
2015年浙江省高考数学命题思路
(数学学科组)
2015年高考是浙江省普通高中深化课程改革首届学生的首次高考,考试范围和要求都有一定的变化。数学试卷遵循《考试说明》,不超纲;依照《教学指导意见》,不偏离;贴近高中数学教学实际,不脱节。
试卷延续了叙述简洁、表达清楚的一贯风格,难度稳定,并呈现出稳中有变,变中求新的特点。
1.稳定考查基础,推陈出新
2015年高考考查范围虽有变化,但试卷仍然稳定考查高中数学主干知识,既关注新增知识点,也注意典型问题和传统方法。理科第4题考查新增知识点,它要求学生对命题有清晰的认识;理科第8题以常见的图形翻折为背景,考查空间想象能力。
2.稳定能力要求,角度变换
试卷在落实基础知识和基本技能的同时,注重对数学思维和数学本质的考查。理科第6题是学习型问题,它依托教材,设问清楚,现学现用;理科第20题以常见二次函数和简单递推为载体构建问题,角度新颖,思维灵活;理科第15题通过空间向量的平台,利用不等式关系,体现最小值的本质,问题的结构特点能让学生有多角度的思考空间。
3.稳定文理差异,逐步调整
试卷关注文理学生的学习差异,文理卷只有一题相同,文科卷中有5题由理科题改编而来。文科第8题由理科第7题改编,问题由抽象变具体,减少了思维量,降低了难度;理科第14题改变数据成为文科第14题,避免了分类讨论,简化了问题;文科第6题是一个生活实际问题,它体现了数学的应用性,这样的变化显示了文理的不同要求。
4.稳定试卷框架,形式渐变
试卷整体结构稳定,充分发挥了三种题型的不同功能。选择题重视概念的本质,要求判断准确。填空题关注计算的方法,要求结论正确,多空题的出现,更好的分散了难点,让学生能分步得分。解答题以多角度、全方位的思考为突破口,展示计算和推理的过程。试卷由22题减为20题,总题量的减少为学生提供了更多的思考时间。
试卷重基础、优思维、减总量、调结构。从基本的函数、常见的图形、简单的递推、熟悉的符号中挖掘出新的设问。它强化本质,强调思维的深刻性;它关注方法,注重思维的灵活性。它导向正确,让数学学习关注本质,课堂教学回归学生。
2015年浙江省高考数学试题评析
调整试卷结构凸显能力考查
绍兴一级教师虞金龙
浙江省教研室特级教师张金良
今年的高考数学试卷,延续了浙江省多年的命题风格,保持了“低起点、宽入口、多层次、区分好”的特色,试题的题型和背景熟悉而常见,整体感觉试题灵活,思维含量高,能充分考查学生的数学素养、思维品质、学习潜能,有很好的区分度和选拔功能。试卷主要体现了以下特点:
1.考查双基、注重覆盖
试卷全面考查了高中数学的基础知识和基本技能,着重考查了中学数学教材中的主干知识,准确把握了高中数学的教学重点。试题覆盖了高中数学的核心知识,涉及了函数的概念、单调性、周期性、最大值与最小值、三角函数、数列、立体几何、解析几何等主要知识,考查全面而又深刻,甚至容易被忽视的存在量词也进行了必要的考查。
2.注重思维、凸显能力
今年的试题看似熟悉平淡,但将数学思想方法和素养作为考查的重点,提高了试题的层次和品位,能力考查步伐加大,许多试题保持了干净、简洁、朴实、明了的特点,充分体现了数学语言的形式化与数学的意义,对考生的数学语言的.阅读、理解、转化、表达等能力提出了较高的要求。如理科第7、8、14、15、18、20题,文科第8、15、20(2)题等,数学形式化程度高,不仅需要考生有较强的数学阅读与审题能力,而且需要考生有灵活机智的解题策略与分析问题解决问题的综合能力。
3.分层考查、文理有别
试题层次分明,由浅入深,各类题型的起点难度较低,但落点较高,选择、填空题的前几道不需花太多时间就能破题,而后几题则需要在充分理解数学概念的基础上灵活应变;解答题的5个题目有10个小题,仍然具有往年的“多问把关”的命题特点。试卷关注文理考生在数学学习方面的差异。理科特点突出,注重考查理性思维和抽象概括能力,文科注重考查形象思维和定量处理能力。全卷文理相同题仅有1题,姐妹题也只有2题,文科较理科在许多方面都作了适当的降低。
4.稳中有变、坚持创新
创新是时代的特征,试卷在三类题型不变的基础上,在试卷结构与命题手法上作了创新,改变以往一成不变的模式,减少了两个选择题,丰富了填空题的形式,出现了一题多空。在命题手法上,通过改造、移植、嫁接的方法编制了一批立意深远、背景丰富、表述简洁的新题。如理科第8题看似简单,但颇值得回味;理科第15题题型新颖,背景深刻,过程简练,不落俗套;理科第18题在经典的二次函数中植入新的设问,令人耳目一新;理科压轴题简洁灵活,独具匠心,需要考生冷静分析后破题;文科第8题在椭圆定义与平面几何性质上做文章,平淡中出新招,凸显了数学的魅力。
统揽全卷,试卷传递一个信息:考生盲目的题海战术,做再多的题也不能考出理想的成绩。高中数学教学要让学生感受到基础知识和基本技能的重要性,要引导学生学会在“看、做、想、研”的基础上做题。
想知道2011年数学高考试题和答案(浙江卷)
排列数公式
排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1(n!表示n(n-1)(n-2)...1,也就是6!=6x5x4x3x2x1[1]
组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。C(n,m)=A(n,m)/m!;C(n,m)=C(n,n-m)。(n≥m)
其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m!=n!/m!(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。
09浙江高考浙江文科数学答案
2011年普通高等学校招生全国统一考试(浙江卷)
理科数学
一、选择题
(1)设函数
,则实数
=
(A)-4或-2
(B)-4或2
(C)-2或4
(D)-2或2
(2)把复数
的共轭复数记作
,i为虚数单位,若
(A)3-i
(B)3+i
(C)1+3i
(D)3
(3)若某集合体的三视图如图所示,则这个集合体的直观图可以是
(4)下列命题中错误的是
(A)如果平面
,那么平面
内一定存在直线平行于平面
(B)如果平面
不垂直于平面
,那么平面
内一定不存在直线垂直于平面
(C)如果平面
,平面
,那么
(D)如果平面
,那么平面
内所有直线都垂直于平面
(5)设实数
满足不等式组
若
为整数,则
的最小值是
(A)14
(B)16
(C)17
(D)19
(6)若
,则
(A)
(B)
(C)
(D)
(7)若
为实数,则“
”是
的
(A)充分而不必要条件
(B)必要而不充分条件
(C)充分必要条件
(D)既不充分也不必要条件
(8)已知椭圆
与双曲线
有公共的焦点,
的一条渐近线与以
的长轴为直径的圆相交于
两点,
若
恰好将线段
三等分,则
(A)
(B)
(C)
(D)
(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率
(A)
(B)
(C)
D
(10)设a,b,c为实数,f(x)
=(x+a)
.记集合S=
若
分别为集合元素S,T的元素个数,则下列结论不可能的是
(A)
=1且
=0
(B)
(C)
=2且
=2
(D)
=2且
=3
非选择题部分
(共100分)
二、填空题:本大题共7小题,每小题4分,共28分
(11)若函数
为偶函数,则实数
=
(12)若某程序图如图所
示,则该程序运行后输出的k的值是
(13)设二项式(x-
)n(a>0)的展开式中X的系数为A,常数项为B,
若B=4A,则a的值是
(14)若平面向量α,β满足|α|≤1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为
,则α与β的夹角
的取值范围是
(15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公
司投递了个人简历,定该毕业生得到甲公司面试的概率为
,得到乙公司面试的概率为
,且三个公司是否让其面试是相互独立的。记X为该毕业生得到面试得公司个数。若
,则随机变量X的数学期望
(16)设
为实数,若
则
的最大值是
.。
(17)设
分别为椭圆
的焦点,点
在椭圆上,若
;则点
的坐标是
.
三、解答题;本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
(18)(本题满分14分)在
中,角
所对的边分别为a,b,c.
已知
且
.
(Ⅰ)当
时,求
的值;
(Ⅱ)若角
为锐角,求p的取值范围;
(19)(本题满分14分)已知公差不为0的等差数列
的首项
为a(
),设数列的前n项和为
,且
成等比数列
(1)求数列
的通项公式及
(2)记
,当
时,试比较
与
的大小.
(20)(本题满分15分)如图,在三棱锥
中,
,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2
(Ⅰ)证明:AP⊥BC;
(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-β为直二面
角?若存在,求出AM的长;若不存在,请说明理由。
(21)(本题满分15分)已知抛物线
:
=
,圆
:
的圆心为点M
(Ⅰ)求点M到抛物线
的准
线的距离;
(Ⅱ)已知点P是抛物线
上一点(异于原点),过点P作圆
的两条切线,交抛物线
于A,B两点,若过M,P两点的直线
垂直于
AB,求直线
的方程
(22)(本题满分14分)
设函数
(I)若
的极值点,求实数
(II)求实数
的取值范围,使得对任意的
,恒有
成立,注:
为自然对数的底数。
2010年浙江省高考试题:理科数学试卷填空题16题怎么解啊
2009年浙江高考文科数学试题和答案
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设 , , ,则 ( )
A. B. C. D.
1. B 命题意图本小题主要考查了集合中的补集、交集的知识,在集合的运算考查对于集合理解和掌握的程度,当然也很好地考查了不等式的基本性质.
解析 对于 ,因此 .
2.“ ”是“ ”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
2. A 命题意图本小题主要考查了命题的基本关系,题中的设问通过对不等关系的分析,考查了命题的概念和对于命题概念的理解程度.
解析对于“ ” “ ”;反之不一定成立,因此“ ”是“ ”的充分而不必要条件.
3.设 ( 是虚数单位),则 ( )
A. B. C. D.
3.D 命题意图本小题主要考查了复数的运算和复数的概念,以复数的运算为载体,直接考查了对于复数概念和性质的理解程度.
解析对于
4.设 是两个不同的平面, 是一条直线,以下命题正确的是( )
A.若 ,则 B.若 ,则
C.若 ,则 D.若 ,则
4.C 命题意图此题主要考查立体几何的线面、面面的位置关系,通过对平行和垂直的考查,充分调动了立体几何中的基本元素关系.
解析对于A、B、D均可能出现 ,而对于C是正确的.
5.已知向量 , .若向量 满足 , ,则 ( )
A. B. C. D.
5.D 命题意图此题主要考查了平面向量的坐标运算,通过平面向量的平行和垂直关系的考查,很好地体现了平面向量的坐标运算在解决具体问题中的应用.
解析不妨设 ,则 ,对于 ,则有 ;又 ,则有 ,则有
6.已知椭圆 的左焦点为 ,右顶点为 ,点 在椭圆上,且 轴, 直线 交 轴于点 .若 ,则椭圆的离心率是( )
A. B. C. D.
6.D 命题意图对于对解析几何中与平面向量结合的考查,既体现了几何与向量的交汇,也体现了数形结合的巧妙应用.
解析对于椭圆,因为 ,则
7.某程序框图如图所示,该程序运行后输出的 的值是( )
A. B.
C. D.
7.A 命题意图此题考查了程序语言的概念和基本的应用,通过对程序语言的考查,充分体现了数学程序语言中循环语言的关键.
解析对于 ,而对于 ,则 ,后面是 ,不符合条件时输出的 .
8.若函数 ,则下列结论正确的是( )
A. , 在 上是增函数
B. , 在 上是减函数
C. , 是偶函数
D. , 是奇函数
8.C 命题意图此题主要考查了全称量词与存在量词的概念和基础知识,通过对量词的考查结合函数的性质进行了交汇设问.
解析对于 时有 是一个偶函数
9.已知三角形的三边长分别为 ,则它的边与半径为 的圆的公共点个数最多为( )
A. B. C. D.
9.C 命题意图此题很好地考查了平面几何的知识,全面而不失灵活,考查的方法上面的要求平实而不失灵动,既有切线与圆的位置,也有圆的移动
解析对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.
10.已知 是实数,则函数 的图象不可能是( )
10.D 命题意图此题是一个考查三角函数图象的问题,但考查的知识点因含有参数而丰富,结合图形考查使得所考查的问题形象而富有深度.
解析对于振幅大于1时,三角函数的周期为 ,而D不符合要求,它的振幅大于1,但周期反而大于了 .
非选择题部分(共100分)
注意事项:
1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
二、填空题:本大题共7小题,每小题4分,共28分。
11.设等比数列 的公比 ,前 项和为 ,则 .
11.15 命题意图此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分体现了通项公式和前 项和的知识联系.
解析对于
12.若某几何体的三视图(单位: )如图所示,则此几何体的体积是 .
12. 18 命题意图此题主要是考查了几何体的三视图,通过三视图的考查充分体现了几何体直观的考查要求,与表面积和体积结合的考查方法.
解析该几何体是由二个长方体组成,下面体积为 ,上面的长方体体积为 ,因此其几何体的体积为18
13.若实数 满足不等式组 则 的最小值是 .
13. 4命题意图此题主要是考查了线性规划中的最值问题,此题的考查既体现了正确画线性区域的要求,也体现了线性目标函数最值求解的要求
解析通过画出其线性规划,可知直线 过点 时,
14.某个容量为 的样本的频率分布直方图如下,则在区间 上的数据的频数为 .
14. 30命题意图此题考查了频率分布直方图,通过设问既考查了设图能力,也考查了运用图表解决实际问题的水平和能力
解析对于在区间 的频率/组距的数值为 ,而总数为100,因此频数为30
15.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:
高峰时间段用电价格表 低谷时间段用电价格表
高峰月用电量
(单位:千瓦时) 高峰电价
(单位:元/千瓦时) 低谷月用电量
(单位:千瓦时) 低谷电价
(单位:元/千瓦时)
50及以下的部分 0.568 50及以下的部分 0.288
超过50至200的部分 0.598 超过50至200的部分 0.318
超过200的部分 0.668 超过200的部分 0.388
若某家庭5月份的高峰时间段用电量为 千瓦时,低谷时间段用电量为 千瓦时,
则按这种计费方式该家庭本月应付的电费为 元(用数字作答).
15. 命题意图此题是一个实际应用性问题,通过对实际生活中的电费的计算,既考查了函数的概念,更侧重地考查了分段函数的应用
解析对于应付的电费应分二部分构成,高峰部分为 ;对于低峰部分为 ,二部分之和为
16.设等差数列 的前 项和为 ,则 , , , 成等差数列.类比以上结论有:设等比数列 的前 项积为 ,则 , , , 成等比数列.
16. 命题意图此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力
解析对于等比数列,通过类比,有等比数列 的前 项积为 ,则 , , 成等比数列.
17.有 张卡片,每张卡片上分别标有两个连续的自然数 ,其中 .
从这 张卡片中任取一张,记“该卡片上两个数的各位数字之和(例如:若取到
标有 的卡片,则卡片上两个数的各位数字之和为 )不小于 ”为 ,
则 .
17. 命题意图此题是一个排列组合问题,既考查了分析问题,解决问题的能力,更侧重于考查学生便举问题解决实际困难的能力和水平
解析对于大于14的点数的情况通过列举可得有5种情况,即 ,而基本有20种,因此
三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
18.(本题满分14分)在 中,角 所对的边分别为 ,且满足 ,
. (I)求 的面积; (II)若 ,求 的值.
18.解析:(Ⅰ)
又 , ,而 ,所以 ,所以 的面积为:
(Ⅱ)由(Ⅰ)知 ,而 ,所以
所以
19.(本题满分14分)如图, 平面 , , , , 分别为 的中点.(I)证明: 平面 ;(II)求 与平面 所成角的正弦值.
19.(Ⅰ)证明:连接 , 在 中, 分别是 的中点,所以 , 又 ,所以 ,又 平面ACD ,DC 平面ACD, 所以 平面ACD
(Ⅱ)在 中, ,所以
而DC 平面ABC, ,所以 平面ABC
而 平面ABE, 所以平面ABE 平面ABC, 所以 平面ABE
由(Ⅰ)知四边形DCQP是平行四边形,所以
所以 平面ABE, 所以直线AD在平面ABE内的射影是AP,
所以直线AD与平面ABE所成角是
在 中, ,
所以
20.(本题满分14分)设 为数列 的前 项和, , ,其中 是常数.
(I) 求 及 ;
(II)若对于任意的 , , , 成等比数列,求 的值.
20、解析:(Ⅰ)当 ,
( )
经验, ( )式成立,
(Ⅱ) 成等比数列, ,
即 ,整理得: ,
对任意的 成立,
21.(本题满分15分)已知函数 .
(I)若函数 的图象过原点,且在原点处的切线斜率是 ,求 的值;
(II)若函数 在区间 上不单调,求 的取值范围.
解析:(Ⅰ)由题意得
又 ,解得 , 或
(Ⅱ)函数 在区间 不单调,等价于
导函数 在 既能取到大于0的实数,又能取到小于0的实数
即函数 在 上存在零点,根据零点存在定理,有
, 即:
整理得: ,解得
22.(本题满分15分)已知抛物线 : 上一点 到其焦点的距离为 .
(I)求 与 的值;
(II)设抛物线 上一点 的横坐标为 ,过 的直线交 于另一点 ,交 轴于点 ,过点 作 的垂线交 于另一点 .若 是 的切线,求 的最小值.
22.解析(Ⅰ)由抛物线方程得其准线方程: ,根据抛物线定义
点 到焦点的距离等于它到准线的距离,即 ,解得
抛物线方程为: ,将 代入抛物线方程,解得
(Ⅱ)由题意知,过点 的直线 斜率存在且不为0,设其为 。
则 ,当 则 。
联立方程 ,整理得:
即: ,解得 或
,而 , 直线 斜率为
,联立方程
整理得: ,即:
,解得: ,或
,
而抛物线在点N处切线斜率:
MN是抛物线的切线, , 整理得
,解得 (舍去),或 ,
2004年数学高考卷浙江理科11题怎么写
首先以单位长度1也就是向量b的模为半径画圆。从圆心引出一条射线。在这条射线上找到一点引出的射线与从圆心引出的这条夹角是60度,与园相切。从圆心到这个点的距离是最大值。a的范围就是0到这个值。可以求出a
max=2倍根号3
/3。
下面解释原因。首先向量b-a就是从a的端点指向b的端点的向量,他与a的夹角是120度,所以a的要取60度角(也就是这两条向量是夹120度角)。
所以所有的和从原点引出的直线呈60度夹角的射线中能和圆有交点的都可以取到。不包括圆心(题目中说的a不等于0)。
所以最外面的可以到与园相切的这条,之后的都不行了。所以算出a的范围是(0,2倍根号3
/3]
2015年高考浙江数学卷第七题什么意思
2004年普通高等学校招生全国统一考试
数 学(浙江卷)参考答案
一.选择题: 本大题共12小题,每小题5分,共60分.
1. D 2.A 3.B 4.C 5.A 6.A 7.C 8.B 9.D 10.D 11.B 12.D
二.填空题:本大题共4小题,每小题4分,满分16分.
13. 14. 14 --25 15. 5 16.
三.解答题:本大题共6小题,满分74分.
17. (本题满分12分)
解: (Ⅰ)
=
=
=
=
(Ⅱ) ∵
∴ ,
又∵
∴
当且仅当 b=c= 时,bc= ,故bc的最大值是 .
(18) (满分12分)
解: (Ⅰ)由题意可得,随机变量 的取值是2、3、4、6、7、10.
随机变量 的概率分布列如下
2 3 4 6 7 10
P 0.09 0.24 0.16 0.18 0.24 0.09
随机变量 的数学期望
=2×0.09+3×0.24+4×0.16+6×0.18+7×0.24+10×0.09=5.2.
(19) (满分12分)
方法一
解: (Ⅰ)记AC与BD的交点为O,连接OE,
∵O、M分别是AC、EF的中点,ACEF是矩形,
∴四边形AOEM是平行四边形,
∴AM∥OE.
∵ 平面BDE, 平面BDE,
∴AM∥平面BDE.
(Ⅱ)在平面AFD中过A作AS⊥DF于S,连结BS,
∵AB⊥AF, AB⊥AD,
∴AB⊥平面ADF,
∴AS是BS在平面ADF上的射影,
由三垂线定理得BS⊥DF.
∴∠BSA是二面角A—DF—B的平面角.
在RtΔASB中,
∴
∴二面角A—DF—B的大小为60?.
(Ⅲ)设CP=t(0≤t≤2),作PQ⊥AB于Q,则PQ∥AD,
∵PQ⊥AB,PQ⊥AF, ,
∴PQ⊥平面ABF, 平面ABF,
∴PQ⊥QF.
在RtΔPQF中,∠FPQ=60?,
PF=2PQ.
∵ΔPAQ为等腰直角三角形,
∴
又∵ΔPAF为直角三角形,
∴ ,
∴
所以t=1或t=3(舍去)
即点P是AC的中点.
方法二
(Ⅰ)建立如图所示的空间直角坐标系.
设 ,连接NE,
则点N、E的坐标分别是( 、(0,0,1),
∴ ,
又点A、M的坐标分别是
( )、(
∴
∴ 且NE与AM不共线,
∴NE∥AM.
又∵ 平面BDE, 平面BDE,
∴AM∥平面BDF.
(Ⅱ)∵AF⊥AB,AB⊥AD,AF
∴AB⊥平面ADF.
∴ 为平面DAF的法向量.
∵ ? =0,
∴ ? =0得
, ,
∴ 为平面BDF的法向量.
∴
∴ 与 的夹角是60?.
即所求二面角A—DF—B的大小是60?.
(Ⅲ)设P(t,t,0)(0≤t≤ )得
∴
又∵PF和CD所成的角是60?.
∴
解得 或 (舍去),
即点P是AC的中点.
(20)(满分12分)
解:(Ⅰ)因为
所以切线 的斜率为
故切线 的方程为 即 .
(Ⅱ)令y=0得x=t+1,
又令x=0得
所以S(t)=
=
从而
∵当 (0,1)时, >0,
当 (1,+∞)时, <0,
所以S(t)的最大值为S(1)=
(21) (满分12分)
解: (Ⅰ)由条件得直线AP的方程
即
因为点M到直线AP的距离为1,
∵
即 .
∵
∴
解得 +1≤m≤3或--1≤m≤1-- .
∴m的取值范围是
(Ⅱ)可设双曲线方程为 由
得 .
又因为M是ΔAPQ的内心,M到AP的距离为1,所以∠MAP=45?,直线AM是∠PAQ的角平分线,且M到AQ、PQ的距离均为1.因此, (不妨设P在第一象限)
直线PQ方程为 .
直线AP的方程y=x-1,
∴解得P的坐标是(2+ ,1+ ),将P点坐标代入 得,
所以所求双曲线方程为
即
(22)(满分14分)
解:(Ⅰ)因为 ,
所以 ,又由题意可知
∴
=
=
∴ 为常数列.
∴
(Ⅱ)将等式 两边除以2,得
又∵
∴
(Ⅲ)∵
又∵
∴ 是公比为 的等比数列.
7.(5分)存在函数f(x)满足,对任意x∈R都有( )
A. f(sin2x)=sinx B. f(sin2x)=x2+x C. f(x2+1)=|x+1| D. f(x2+2x)=|x+1|
+2x)=|x+1|
试题的意思是,你能不能找到一个函数,满足上面的四个条件之一。
答案是D.
考点: 函数解析式的求解及常用方法.
专题: 函数的性质及应用.
分析: 利用x取特殊值,通过函数的定义判断正误即可.
解答:
解:
A.取x=0,则sin2x=0,∴f(0)=0;
取x=π/2,则sin2x=0,∴f(0)=1;
∴f(0)=0,和1,不符合函数的定义;
∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;
B.取x=0,则f(0)=0;
取x=π,则f(0)=π2+π; ∴f(0)有两个值,不符合函数的定义; ∴该选项错误;
C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0; 这样f(2)有两个值,不符合函数的定义; ∴该选项错误;
D.令|x+1|=t,t≥0,则f(t2﹣1)=t;
令t2﹣1=x,则t=√x+1;
∴f(x)=; =√x+1
即存在函数f(x)==√x+1,对任意x∈R,都有f(x2+2x)=|x+1|; ∴该选项正确.
故选:D.
点评: 本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.