您现在的位置是: 首页 > 教育研究 教育研究

数学高考大题及答案解析,数学高考大题专项

tamoadmin 2024-07-09 人已围观

简介1.急!怎么做对高考数学三角函数大题!2.高考数学导数大题怎么确保思路正确3.高考数列题型及解题方法4.高中提升数学大题的教辅书推荐5.高中数学解三角形练习题6.2022全国新高考Ⅱ卷文科数学试题及答案解析 17.(12分) △ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为? (1)求sinBsinC; (2)若6cosBcosC=1,a=3,求△ABC的周长 18.(

1.急!怎么做对高考数学三角函数大题!

2.高考数学导数大题怎么确保思路正确

3.高考数列题型及解题方法

4.高中提升数学大题的教辅书推荐

5.高中数学解三角形练习题

6.2022全国新高考Ⅱ卷文科数学试题及答案解析

数学高考大题及答案解析,数学高考大题专项

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为?

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.

20.(12分)

已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae?^x+(a﹣2)e^x﹣x.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4-4,坐标系与参数方程](10分)

在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.

(1)若a=-1,求C与l的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

23.[选修4—5:不等式选讲](10分)

已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.

(1)当a=1时,求不等式f(x)≥g(x)的解集;

(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.

急!怎么做对高考数学三角函数大题!

最后的话,一般用数列或者双曲线压轴较多。双曲线的话,一般会有三个小题,第一题简单,第二题中等,第三题思维量较大。数列的话,一般是求n项的和……什么的,反正特殊的几种数列的求和方法一定要熟练掌握。还有不清楚的欢迎继续提问……

高考数学导数大题怎么确保思路正确

高考三角函数题一般是中档题,难度适中,想拿高分一定要以最快的速度准确地解决这道题。通常这道题的考法是与解三角形结合,考察正弦定理、余弦定理及各种三角代换手段。

应对方法相对简单:

1,搞清三角函数的代数定义和表达形式,即个三角涵数的公式.熟悉各公式之间的关系;

2,最重要的是要搞清各个三角涵数的几何意义.三角涵数的几何意义反映了三角涵数的本质,也就是说要把三角涵数的问题放到一个座标系中去,使自己脑子里有一个清晰的座标系.

3,与平面几何联系起来,特别是与直角三角形和勾股定理联系起来,对于理解三角涵数的定义,性质,特点有非常大的好处.

4,适当做一些基本练习题增加感性认识。

高考时,做到这里应当不忙不乱,理性应对,通过大量的平时训练和心态调整一定能拿下高考数学。

高考数列题型及解题方法

高考导数考什么?

高考导数题主要是考查与函数的综合,考查不等式、导数的应用等知识,难度属于中等难度。

都有什么题型呢?

①应用导数求函数的单调区间,或判定函数的单调性;

②应用导数求函数的极值与最值;

③应用导数解决有关不等式问题。

有没有什么解题技巧啦?

导数的解题技巧还是比较固定的,一般思路为

①确定函数f(x)的定义域(最容易忽略的,请牢记);

②求方程f′(x)=0的解,这些解和f(x)的间断点把定义 域分成若干区间;

③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。

从这两步开始有分类讨论,函数的最值可能会出现极值点处或者端点处,多项式求导一般结合不等式求参数的取值范围,根据题目会有一定的变化,那接下来具体总结一些做题技巧。

技巧破解+例题拆解

1. 若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x之间的区别。

2. 若题目考察的是曲线的切线,分为两种情况:

(1)关于曲线在某一点的切线,求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.

(2)关于两曲线的公切线 ,若一直线同时与两曲线相切,则称该直线为两曲线的公切线.

高中提升数学大题的教辅书推荐

高考数列题型及解题方法如下:

1、高考数学选择题部分答题技巧。

高考数学的选择题部分题型考试的方向基本都是固定的,当你在一轮二轮复习过程中总结银饥谈出题目的出题策略时,答题就变得很简单了。

比如立体几何三视图,概率计算,圆锥曲线离心率等等试题中都有一些特征,只要掌握思考的切入方法和要点,再适当训练基本就可以全面突破。但是如果不掌握核心方法,单纯做题训练就算做很多题目,突破也非常困难,学习就会进入一个死循环,对照答案可锋碰以理解,但自己遇到新的题目任然无从下手。

2、高考数学关于大题方面答题技巧。

高考数学基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。对于较难的原则曲线和导数两道题目基本要拿一半的分数。

考生复习时可把数学大题的每一道题作为一个独立的版块音节,先总结每道大题常考的几种题型,再专项突破里面的运算方法,图形处理方法以及解题的思考突破口,只要把这些都归纳到位,那么总结的框架套路,都是可以直接肢猜秒刷的题目的。

2023高考数学答题窍门。

跳步答题:

高考数学解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向:如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于高考数学考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。

也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持券面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。

极限思想解题步骤:

极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量:二、确认这变量通过无限过程的结果就是所求的未知量:三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

高中数学解三角形练习题

高考数学大题分值高、综合性强、跨度大,考查目标集中却又灵活多变,所以数学大题要多刷题,总结常用的数学知识点有哪些,一本好的数学大 题教辅书对于高考数学成绩的提高有很大的帮助。数学作为一个容易提分也容易拉分的科目,精准的训练大题也是提升成绩的好办法之一。下面我就来推荐一下适合巩固学习的教辅书。

数学备考注意事项

如果你的水平在中等偏下,做些数学模拟题就主要攻克简单题和中档题,难题就不要浪费时间了。

如果你的水平是中等水平,尽量保证数学简单题和中档题不出错,简单的选择题和大题是提分的关键。

如果你的水平是中等偏上,就需要搞懂数学每套试卷的所有题。

高中数学大题教辅书推荐

《蝶变大题必做》

蝶变家的这本数学大题教辅书共分为100组题,每组6题,按照历年高考大题的出题规律设计排版,题量大,题型全,覆盖近10年高考大题的命题规律,后6组为高考题中的选考题部分,根据历年的出题形式精心挑选的36道数学选考题,供考生练习.力求做到高考数学大题中各个考点所考的题型不遗漏,并结合高考命题新规律精心挑选。

如果想要要练一练数学大题的小可爱们建议选择这本练习册,题型贴近高考,内容全面,对于提高数学大题很有帮助。

《挑战压轴题》

这是一本高考数学强化训练大题的教辅书,虽然主打压轴题,里面的题型全面,对于高考数学大题做了系统的规划和总结。

但是这本数学大题教辅书的数学大题的题型偏难,适合数学基础比较好的同学。掌握对知识点的灵活运用,熟练掌握解题的方法和技巧,方能起到事半功倍的效果。

《大题突破》

这本数学教辅书对高中数学大题做了详细的总结和归纳,每一专题前面有考情分析、备考策略、大题示例,对高中数学大题的考情做了深度的剖析。这本题比较适合有一定基础的同学,巩固和提升数学大题。

处于中等以下,基础不是很高的同学可以选择《蝶变大题必做》,对于数学大题的巩固和提升非常有帮助。

《蝶变大题必做》网友反馈

玫瑰少年:

蝶变家的数学大题内容真的很详细,比较适合我这种基础不是很好的同学巩固练习。

高考冲冲冲:

很好看 用着也是很开心的 不错 体验感极佳。蝶变家的这本大题对于中等成绩的我来说提高成绩简直太有用了,爱了爱了。

加油哦:

包装真的爱了,快递封的也超级好,高颜值,高品质,非常好,一分钱一分货,材质外观和质量一看就很上档次,非常喜欢。

梦中有世界:

想巩固练习一下数学大题,无意间发现了这本教辅书,题型真的很好,很适合我这种基础不是很好的同学。

超级专家号:

高考冲冲冲,这本大题真的太赞了,又入手了一本蝶变家的英语作文,简直太好用了。

2022全国新高考Ⅱ卷文科数学试题及答案解析

不一定,但解三角形的确是重点。网上有很多相关练习

历届高考中的“解三角形”试题精选(自我测试)

一、选择题:(每小题5分,计40分)

1.(2008北京文)已知△ABC中,a=,b=,B=60°,那么角A等于( )

(A)135° (B)90° (C)45° (D)30°

2.(2007重庆理)在中,则BC =( )

A. B. C.2 D.

3.(2006山东文、理)在△ABC中,角A、B、C的对边分别为a、b、c,A=,a=,b=1,则c=( )

(A)1 (B)2 (C)—1 (D)

4.(2008福建文)在中,角A,B,C的对应边分别为a,b,c,若,则角B的值为( )

A. B. C.或 D.或

5.(2005春招上海)在△中,若,则△是( )

(A)直角三角形. (B)等边三角形. (C)钝角三角形. (D)等腰直角三角形.

6.(2006全国Ⅰ卷文、理)的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且,则( )

A. B. C. D.

7.(2005北京春招文、理)在中,已知,那么一定是( )

A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形

8.(2004全国Ⅳ卷文、理)△ABC中,a、b、c分别为∠A、∠B、∠C的对边.如果a、b、c

成等差数列,∠B=30°,△ABC的面积为,那么b=( )

A. B. C. D.

二.填空题:(每小题5分,计30分)

9.(2007重庆文)在△ABC中,AB=1, BC=2, B=60°,则AC= 。

10. (2008湖北文)在△ABC中,a,b,c分别是角A,B,C所对的边,已知

则A= .

11.(2006北京理)在中,若,则的大小是_____.

12.(2007北京文、理)在中,若,,,则________.

13.(2008湖北理)在△ABC中,三个角A,B,C的对边边长分别为a=3,b=4,c=6,则bc cosA+ca cosB+ab cosC的值为 .

14.(2005上海理)在中,若,,,则的面积S=_______

三.解答题:(15、16小题每题12分,其余各题每题14分,计80分)

15.(2008全国Ⅱ卷文) 在中,,.

(Ⅰ)求的值; (Ⅱ)设,求的面积.

16.(2007山东文)在中,角的对边分别为.

(1)求;(2)若,且,求.

17、(2008海南、宁夏文)如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2。(1)求cos∠CBE的值;(2)求AE。

18.(2006全国Ⅱ卷文)在,求

(1) (2)若点

19.(2007全国Ⅰ理)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c, a=2bsinA

(Ⅰ)求B的大小; (Ⅱ)求的取值范围.

O

20.(2003全国文、理,广东)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?

历届高考中的“解三角形”试题精选(自我测试)

参考答案

一、选择题:(每小题5分,计40分)

二.填空题:(每小题5分,计30分)

9.; 10. 30° ; .11. __ 60O _. 12. ; 13. ; 14.

三.解答题:(15、16小题每题12分,其余各题每题14分,计80分)

15.解:(Ⅰ)由,得,由,得.

所以.

(Ⅱ)由正弦定理得.

所以的面积.

16.解:(1)

又 解得.

,是锐角. .

(2)∵,即abcosC= ,又cosC= .

又 . .

. .

17.解:(Ⅰ)因为,,所以.

所以.

(Ⅱ)在中,,

由正弦定理.

18.解:(1)由

由正弦定理知

(2),

由余弦定理知

19.解:(Ⅰ)由,根据正弦定理得,所以,

由为锐角三角形得.

(Ⅱ)

由为锐角三角形知,,.

解得 所以,

所以.由此有,

所以,的取值范围为.

20.解:设在t时刻台风中心位于点Q,此时|OP|=300,|PQ|=20t,

台风侵袭范围的圆形区域半径为r(t)=10t+60,

O

由,可知,

cos∠OPQ=cos(θ-45o)= cosθcos45o+ sinθsin45o

=

在 △OPQ中,由余弦定理,得

=

=

若城市O受到台风的侵袭,则有|OQ|≤r(t),即

整理,得,解得12≤t≤24,

答:12小时后该城市开始受到台风的侵袭.

2010届高考数学目标训练(1)(文科版)

时量:60分钟 满分:80分 班级: 姓名: 计分:

个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’)

一、选择题:本大题共5小题,每小题5分,满分25分.

1、若复数是纯虚数,则实数a的值为

A.1 B.2 C.1或2 D.-1

2、设等比数列的公比q=2,前n项和为Sn,则=( )

A. B. C. D.

3、设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为

,则点P横坐标的取值范围为

(A) (B)[-1,0] (C)[0,1] (D)

4、在△ABC中,角ABC的对边分别为a、b、c,若,则角B的值为

A. B. C.或 D. 或

5、用与球心距离为的平面去截球,所得的截面面积为,则球的体积为

A. B. C. D.

二、填空题:本大题共3小题,每小题5分,满分15分.

6、的夹角为,,则

7、若满足约束条件则的最大值为 .

8、若直线与圆 (为参数)没有公共点,

则实数m的取值范围是

三、解答题:本大题共3小题,满分40分,第9小题12分,第10、11小题各14分. 解答须写出文字说明、证明过程或演算步骤.

9、因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立.该方案预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑桔产量为第一年产量的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4.

(1)求两年后柑桔产量恰好达到灾前产量的概率;

(2)求两年后柑桔产量超过灾前产量的概率.

10、设平面直角坐标系xoy中,设二次函数的图像与两坐标轴有三个交点,经过这三个交点的圆记为C。求:

(1)求实数b的取值范围

(2)求圆C的方程

(3)问圆C是否经过某定点(其坐标与b无关)?请证明你的结论。

11、在数列中,,.

(Ⅰ)设.证明:数列是等差数列;

(Ⅱ)求数列的前项和.

答案详解

一、选择题:本大题共5小题,每小题5分,满分25分.

1、若复数是纯虚数,则实数a的值为

A.1 B.2 C.1或2 D.-1

解:由得,且(纯虚数一定要使虚部不为0)

2、设等比数列的公比q=2,前n项和为Sn,则=( )

A. B. C. D.

解:

3、设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为

,则点P横坐标的取值范围为

(A) (B)[-1,0] (C)[0,1] (D)

解析:本小题主要考查利用导数的几何意义求切线斜率问题。依题设切点的横坐标

为, 且(为点P处切线的倾斜角),又∵,

∴,∴

4、在△ABC中,角ABC的对边分别为a、b、c,若,则角B的值为

A. B. C.或 D. 或

解: 由得即

,又在△中所以B为或

5、 用与球心距离为的平面去截球,所得的截面面积为,则球的体积为

A. B. C. D.

解:截面面积为截面圆半径为1,又与球心距离为球的半径是,

所以根据球的体积公式知,故B为正确答案.

二、填空题:本大题共3小题,每小题5分,满分15分.

6、的夹角为,,则 7

7、若满足约束条件则的最大值为 9 .

8、若直线与圆 (为参数)没有公共点,

则实数m的取值范围是

解:圆心为,要没有公共点,根据圆心到直线的距离大于半径可得

,即,

三、解答题:本大题共3小题,满分40分,第9小题12分,第10、11小题各14分. 解答须写出文字说明、证明过程或演算步骤.

9、因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立.该方案预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑桔产量为第一年产量的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4.

(1)求两年后柑桔产量恰好达到灾前产量的概率;

(2)求两年后柑桔产量超过灾前产量的概率.

解:(1)令A表示两年后柑桔产量恰好达到灾前产量这一事件

(2)令B表示两年后柑桔产量超过灾前产量这一事件

10、设平面直角坐标系xoy中,设二次函数的图像与两坐标轴有三个交点,经过这三个交点的圆记为C。求:

(1)求实数b的取值范围

(2)求圆C的方程

(3)问圆C是否经过某定点(其坐标与b无关)?请证明你的结论。

解析:本小题考查二次函数图像于性质、圆的方程的求法。

(1)令x=0,得抛物线于y轴的交点是(0,b)

令f(x)=0,得x2+2x+b=0,由题意b≠0且△>0,解得b<1且b≠0

(2)设所求圆的一般方程为x2+ y2+Dx+Ey+F=0

令y=0,得x2+Dx+F=0,这与x2+2x+b=0是同一个方程,故D=2,F=b

令x=0,得y2+ Ey+b=0,此方程有一个根为b,代入得E=-b-1

所以圆C的方程为x2+ y2+2x -(b+1)y+b=0

(3)圆C必过定点(0,1),(-2,1)

证明如下:将(0,1)代入圆C的方程,得左边= 02+ 12+2×0-(b+1)×1+b=0,右边=0

所以圆C必过定点(0,1);同理可证圆C必过定点(-2,1)。

11、在数列中,,.

(Ⅰ)设.证明:数列是等差数列;

(Ⅱ)求数列的前项和.

解:(1),

则为等差数列,,

,.

(2)

两式相减,得

在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。

2022全国新高考Ⅱ卷文科数学试题及答案解析

2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。

2022高考数学大题题型 总结

一、三角函数或数列

数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。

近几年来,关于数列方面的考题题主要包含以下几个方面:

(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。

(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。

(3)应用题中的数列问题,一般是以增长率问题出现。

二、立体几何

高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.

四、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

(1)、几何问题代数化。

(2)、用代数规则对代数化后的问题进行处理。

五、函数与导数

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等 方法 精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

2022高考解答题评分标准

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

解题策略:

(1)常见失分因素:

1.对题意缺乏正确的理解,应做到慢审题快做题;

2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;

3.思维不严谨,不要忽视易错点;

4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

5.计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

2022全国新高考Ⅱ卷文科数学试题及答案解析相关 文章 :

★ 2022高考全国甲卷数学试题及答案

★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)

★ 2022年浙江高考数学试卷

★ 2022新高考2卷语文试题及答案一览

★ 2022全国高考试卷分几类

★ 2022高考数学必考知识点归纳最新

★ 2022年高考数学必考知识点总结最新

★ 2022高考文综理综各题型分数值一览

★ 2022年新高考Ⅰ卷语文题目与答案参考

★ 2022新高考Ⅱ卷选择创造未来作文12篇

文章标签: # 高考 # 数学 # 10px