您现在的位置是: 首页 > 教育研究 教育研究

2017广东高考理数答案_2017年广东高考题

tamoadmin 2024-06-20 人已围观

简介1.2017年高考是全国卷吗2.2019高考是几月几号3.2017年初一下册数学期末试题及答案4.2017年高考到底改革吗?不一样,试卷选用情况如下:全国I卷(全国乙卷):河南、河北、山西、安徽、湖北、湖南、江西、广东、福建、山东(注:2017年山东省仅英语、综合两科使用全国卷,语文、数学两科仍自主命题)全国II卷(全国甲卷):黑龙江、吉林、辽宁、内蒙古、宁夏、甘肃、新疆、青海、西藏、陕西、重庆、

1.2017年高考是全国卷吗

2.2019高考是几月几号

3.2017年初一下册数学期末试题及答案

4.2017年高考到底改革吗?

2017广东高考理数答案_2017年广东高考题

不一样,试卷选用情况如下:

全国I卷(全国乙卷):河南、河北、山西、安徽、湖北、湖南、江西、广东、福建、山东(注:2017年山东省仅英语、综合两科使用全国卷,语文、数学两科仍自主命题)

全国II卷(全国甲卷):黑龙江、吉林、辽宁、内蒙古、宁夏、甘肃、新疆、青海、西藏、陕西、重庆、海南(注:2017年海南省仅语文、数学、英语三科使用全国卷,物理/政治、化学/历史、生物/地理三科仍使用教育部为其单独命题的分科试卷)

全国III卷(全国丙卷):贵州、广西、云南、四川

自主命题:北京、天津、江苏、浙江、上海、山东(仅语文、数学两科)。

扩展资料

不得参加高考的情形:

(1)具有高等学历教育资格的高校的在校生;或已被高等学校录取并保留入学资格的学生;

(2)高级中等教育学校非应届毕业的在校生;

(3)在高级中等教育阶段非应届毕业年份以弄虚作假手段报名并违规参加普通高校招生考试(包括全国统考、省级统考和高校单独组织的招生考试)的应届毕业生;

(4)因违反国家教育考试规定,被给予暂停参加普通高校招生考试处理且在停考期内的人员;

(5)因触犯刑法已被有关部门采取强制措施或正在者。

百度百科——2017年普通高等学校招生全国统一考试

2017年高考是全国卷吗

6月7日 上午9:00-11:30 语文

6月7日 下午3:00-5:00 文数/理数

6月8日 上午9:00-11:30 文综/理综

6月8日 下午3:00-5:00 外语(含听力)

2019高考是几月几号

2017年高考部分省份是全国卷。

具体如下:

1.全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建

2.全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆

3.全国Ⅲ卷地区:云南、广西、贵州、四川

4.海南省:全国Ⅱ卷(语、数、英)+单独命题(政、史、地、物、化、生)

5.山东省:全国Ⅰ卷(外语、文综、理综)+自主命题(语文、文数、理数)

其中自主命题的有:

1.江苏省:全部科目自主命题

2.北京市:全部科目自主命题

3.天津市:全部科目自主命题

4.上海市:全部科目自主命题

高考试题全国卷简称全国卷,它是教育部考试中心组织命制的适用于全国大部分省区的高考试卷,目的在于保证人才选拔的公正性。

从2016年开始,全国Ⅰ、Ⅱ、Ⅲ卷分别改称为全国乙、甲、丙卷。小语种(日语/俄语/法语/德语/西班牙语)高考统一使用全国卷,各省均无自主命题权,且不分甲乙丙卷。

参考资料:

全国卷_百度百科

2017年初一下册数学期末试题及答案

2019高考是几月几号介绍如下:

2019年全国高考6月6日下午看考场,7日-9日考试,各省考试科目及考试具体时间安排不同。全国卷满分是750分,主要考语数外和综合,三大主科各150分。

2019年高考考3天

全国各省市高考时间及考试科目是略有差异的,但是绝大部分省市都是6月7号和6月8号这两天高考完,因为全国卷试题是一样的,需要在同一天考试,否则就泄题了。6月9号是外语口试,不是特别重要,但是也需要参加。也有部分省市6月9号这一天也有高考科目,比如海南,因为海南不是考文综或理综,而是政史地物化生六科分开考,所以高考要考三天。

以全国卷为例,全国卷高考第一天,也就是6月7号,上午考语文,9点开考,考2.5个小时,下午考数学,包括文数和理数,3点开考,考2个小时。第二天6月8号上午考综合,包括文综和理综,也是两个半小时,下午英语考2个小时,开考和结束时间和前一天一样。

高考有很多地区都已经改革了,有的地区是在2017年开始、有的是在2018年开始,也就是说要到2020年高考才会实行,那么到时一部分省市高考6月8号也会有考试科目,考试试卷也可能发生变化。

高考改革有什么政策

高考改革以后,英语实行的是一年两考,也就是说英语在高三的时候可以考两次,一次是在高考的时候考,另一次是在高三期间,取最高的一个分数作为高考分数。改革后不分文理科,同学们可以选择其中三科作为高考科目,其他几科在高中也考试,但不计入高考总分。

高考选考科目是和大学所学专业挂钩的,有些专业只有你选的科目里面包含了某一科,才可以报考,否则不允许报考,这和文理科专业不能混选类似。

通过数据显示,如果大家高中选学物理、化学、历史这三科,基本上绝大部分的专业都可以报考,而如果选择政史地三科,仅有一半大学专业能报,所以选考科目也是很重要的。此外,改革后录取方面也有所调整,主要看高考分数和学考成绩,也会参考综合素质评价。

2017年高考到底改革吗?

一、选择题(每小题3分,共18分,每题有且只有一个答案正确.)

 1.下列运算正确的是()

 A.3﹣2=6B.m3?m5=m15C.(x﹣2)2=x2﹣4D.y3+y3=2y3

 2.在﹣、、π、3.212212221…这四个数中,无理数的个数为()

 A.1B.2C.3D.4

 3.现有两根木棒,它们的长分别是20cm和30cm.若要订一个三角架,则下列四根木棒的长度应选()

 A.10cmB.30cmC.50cmD.70cm

 4.下列语句中正确的是()

 A.﹣9的平方根是﹣3B.9的平方根是3

 C.9的算术平方根是±3D.9的算术平方根是3

 5.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()

 A.6折B.7折C.8折D.9折

 6.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()

 A.4个B.3个C.2个D.1个

 二、填空题(每小题3分,共30分)

 7.﹣8的立方根是.

 8.x2?(x2)2=.

 9.若am=4,an=5,那么am﹣2n=.

 10.请将数字0.000012用科学记数法表示为.

 11.如果a+b=5,a﹣b=3,那么a2﹣b2=.

 12.若关于x、y的方程2x﹣y+3k=0的解是,则k=.

 13.n边形的内角和比它的外角和至少大120°,n的最小值是.

 14.若a,b为相邻整数,且a<

 15.小亮将两张长方形纸片如图所示摆放,使小长方形纸片的一个顶点正好落在大长方形纸片的边上,测得∠1=35°,则∠2=°.

 16.若不等式组有解,则a的取值范围是.

 三、解答题(本大题共10小条,52分)

 17.计算:

 (1)x3÷(x2)3÷x5

 (x+1)(x﹣3)+x

 (3)(﹣)0+()﹣2+(0.2)2015×52015﹣|﹣1|

 18.因式分解:

 (1)x2﹣9

 b3﹣4b2+4b.

 19.解方程组:

 ①;

 ②.

 20.解不等式组:,并在数轴上表示出不等式组的解集.

 21.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;

 若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.

 22.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.

 (1)请在图中画出平移后的′B′C′;

 △ABC的面积为;

 (3)若AB的长约为5.4,求出AB边上的高(结果保留整数)

 23.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.

 24.若不等式组的解集是﹣1

 (1)求代数式(a+1)(b﹣1)的值;

 若a,b,c为某三角形的三边长,试求|c﹣a﹣b|+|c﹣3|的值.

 25.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.

 ①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.

 题设(已知):.

 结论(求证):.

 证明:.

 26.某商场用18万元购进A、B两种商品,其进价和售价如下表:

 AB

 进价(元/件)12001000

 售价(元/件)13801200

 (1)若销售完后共获利3万元,该商场购进A、B两种商品各多少件;

 若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.

 ①问共有几种进货方案?

 ②要保证利润,你选择哪种进货方案?

 参考答案与试题解析

 一、选择题(每小题3分,共18分,每题有且只有一个答案正确.)

 1.下列运算正确的是()

 A.3﹣2=6B.m3?m5=m15C.(x﹣2)2=x2﹣4D.y3+y3=2y3

 考点:完全平方公式;合并同类项;同底数幂的乘法;负整数指数幂.

 分析:根据负整数指数幂,同底数幂的乘法,完全平分公式,合并同类项,即可解答.

 解答:解:A、,故错误;

 B、m3?m5=m8,故错误;

 C、(x﹣2)2=x2﹣4x+4,故错误;

 D、正确;

 故选:D.

 点评:本题考查了负整数指数幂,同底数幂的乘法,完全平分公式,合并同类项,解决本题的关键是熟记相关法则.

 2.在﹣、、π、3.212212221…这四个数中,无理数的个数为()

 A.1B.2C.3D.4

 考点:无理数.

 分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

 解答:解:﹣是分数,是有理数;

 和π,3.212212221…是无理数;

 故选C.

 点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

 3.现有两根木棒,它们的长分别是20cm和30cm.若要订一个三角架,则下列四根木棒的长度应选()

 A.10cmB.30cmC.50cmD.70cm

 考点:三角形三边关系.

 分析:首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步找到符合条件的答案.

 解答:解:根据三角形的三边关系,得

 第三根木棒的长度应大于10cm,而小于50cm.

 故选B

 点评:本题考查了三角形中三边的关系求解;关键是求得第三边的取值范围.

 4.下列语句中正确的是()

 A.﹣9的平方根是﹣3B.9的平方根是3

 C.9的算术平方根是±3D.9的算术平方根是3

 考点:算术平方根;平方根.

 分析:A、B、C、D分别根据平方根和算术平方根的定义即可判定.

 解答:解:A、﹣9没有平方根,故A选项错误;

 B、9的平方根是±3,故B选项错误;

 C、9的算术平方根是3,故C选项错误.

 D、9的算术平方根是3,故D选项正确.

 故选:D.

 点评:本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根.若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.

 5.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()

 A.6折B.7折C.8折D.9折

 考点:一元一次不等式的应用.

 分析:利用每件利润不少于2元,相应的关系式为:利润﹣进价≥2,把相关数值代入即可求解.

 解答:解:设打x折销售,每件利润不少于2元,根据题意可得:

 15×﹣10≥2,

 解得:x≥8,

 答:最多打8折销售.

 故选:C.

 点评:此题主要考查了一元一次不等式的应用,本题的关键是得到利润的关系式,注意“不少于”用数学符号表示为“≥”.

 6.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()

 A.4个B.3个C.2个D.1个

 考点:平行线的性质;余角和补角.

 分析:先根据∠CED=90°,EF⊥CD可得出∠EDF+∠DEF=90°,∠EDF+∠DCE=90°,再由平行线的性质可知∠DCE=∠AEC,故∠AEC+∠EDF=90°,由此可得出结论.

 解答:解:∵∠CED=90°,EF⊥CD,

 ∴∠EDF+∠DEF=90°,∠EDF+∠DCE=90°.

 ∵AB∥CD,

 ∴∠DCE=∠AEC,

 ∴∠AEC+∠EDF=90°.

 故选B.

 点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.

 二、填空题(每小题3分,共30分)

 7.﹣8的立方根是﹣2.

 考点:立方根.

 分析:利用立方根的定义即可求解.

 解答:解:∵(﹣2)3=﹣8,

 ∴﹣8的立方根是﹣2.

 故答案为:﹣2.

 点评:本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.

 8.x2?(x2)2=x6.

 考点:幂的乘方与积的乘方;同底数幂的乘法.

 分析:根据同底数幂的乘法的性质,幂的乘方的性质,即可解答.

 解答:解:x2?(x2)2=x2?x4=x6.

 故答案为:x6.

 点评:本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.

 9.若am=4,an=5,那么am﹣2n=.

 考点:同底数幂的除法;幂的乘方与积的乘方.

 分析:根据同底数幂的除法,底数不变指数相减;幂的乘方,底数不变指数相乘,即可解答.

 解答:解:am﹣2n=,

 故答案为:.

 点评:本题考查同底数幂的除法,幂的乘方很容易混淆,一定要记准法则才能做题.

 10.请将数字0.000012用科学记数法表示为1.2×10﹣5.

 考点:科学记数法—表示较小的数.

 分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

 解答:解:0.000012=1.2×10﹣5.

 故答案为:1.2×10﹣5.

 点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

 11.如果a+b=5,a﹣b=3,那么a2﹣b2=15.

 考点:因式分解-运用公式法.

 分析:首先利用平方差公式进行分解即可,进而将已知代入求出即可.

 解答:解:∵a2﹣b2=(a+b)(a﹣b),

 ∴当a+b=5,a﹣b=3时,原式=5×3=15.

 故答案为:15.

 点评:此题主要考查了运用公式法分解因式以及代数式求值,正确分解因式是解题关键.

 12.若关于x、y的方程2x﹣y+3k=0的解是,则k=﹣1.

 考点:二元一次方程的解.

 专题:计算题.

 分析:把已知x与y的值代入方程计算即可求出k的值.

 解答:解:把代入方程得:4﹣1+3k=0,

 解得:k=﹣1,

 故答案为:﹣1.

 点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.

 13.n边形的内角和比它的外角和至少大120°,n的最小值是5.

 考点:多边形内角与外角.

 分析:n边形的内角和是(n﹣2)?180°,n边形的外角和是360度,内角和比它的外角和至少大120°,就可以得到一个不等式:(n﹣2)?180﹣360>120,就可以求出n的范围,从而求出n的最小值.

 解答:解:(n﹣2)?180﹣360>120,解得:n>4.

 因而n的最小值是5.

 点评:本题已知一个不等关系,就可以利用不等式来解决.

 14.若a,b为相邻整数,且a<

 考点:估算无理数的大小.

 分析:估算的范围,即可确定a,b的值,即可解答.

 解答:解:∵,且<

 ∴a=2,b=3,

 ∴b﹣a=,

 故答案为:.

 点评:本题考查了估算无理数的方法:找到与这个数相邻的两个完全平方数,这样就能确定这个无理数的大小范围.

 15.小亮将两张长方形纸片如图所示摆放,使小长方形纸片的一个顶点正好落在大长方形纸片的边上,测得∠1=35°,则∠2=55°.

 考点:平行线的性质.

 分析:过点E作EF∥AB,由AB∥CD可得AB∥CD∥EF,故可得出∠4的度数,进而得出∠3的度数,由此可得出结论.

 解答:解:如图,过点E作EF∥AB,

 ∵AB∥CD,

 ∴AB∥CD∥EF.

 ∵∠1=35°,

 ∴∠4=∠1=35°,

 ∴∠3=90°﹣35°=55°.

 ∵AB∥EF,

 ∴∠2=∠3=55°.

 故答案为:55.

 点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.

 16.若不等式组有解,则a的取值范围是a>1.

 考点:不等式的解集.

 分析:根据题意,利用不等式组取解集的方法即可得到a的范围.

 解答:解:∵不等式组有解,

 ∴a>1,

 故答案为:a>1.

 点评:此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.

 三、解答题(本大题共10小条,52分)

 17.计算:

 (1)x3÷(x2)3÷x5

 (x+1)(x﹣3)+x

 (3)(﹣)0+()﹣2+(0.2)2015×52015﹣|﹣1|

 考点:整式的混合运算.

 分析:(1)先算幂的乘方,再算同底数幂的除法;

 先利用整式的乘法计算,再进一步合并即可;

 (3)先算0指数幂,负指数幂,积的乘方和绝对值,再算加减.

 解答:解:(1)原式=x3÷x6÷x5

 =x﹣4;

 原式=x2﹣2x﹣3+2x﹣x2

 =﹣3;

 (3)原式=1+4+1﹣1

 =5.

 点评:此题考查整式的混合运算,掌握运算顺序与计算方法是解决问题的关键.

 18.因式分解:

 (1)x2﹣9

 b3﹣4b2+4b.

 考点:提公因式法与公式法的综合运用.

 专题:计算题.

 分析:(1)原式利用平方差公式分解即可;

 原式提取b,再利用完全平方公式分解即可.

 解答:解:(1)原式=(x+3)(x﹣3);

 原式=b(b2﹣4b+4)=b(b﹣2)2.

 点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.

 19.解方程组:

 ①;

 ②.

 考点:解二元一次方程组.

 分析:本题可以运用消元法,先消去一个未知量,变成一元一次方程,求出解,再将解代入原方程,解出另一个,即可得到方程组的解.

 解答:解:(1)

 ①×2,得:6x﹣4y=12③,

 ②×3,得:6x+9y=51④,

 则④﹣③得:13y=39,

 解得:y=3,

 将y=3代入①,得:3x﹣2×3=6,

 解得:x=4.

 故原方程组的解为:.

 方程②两边同时乘以12得:3(x﹣3)﹣4(y﹣3)=1,

 化简,得:3x﹣4y=﹣2③,

 ①+③,得:4x=12,

 解得:x=3.

 将x=3代入①,得:3+4y=14,

 解得:y=.

 故原方程组的解为:.

 点评:本题考查了二元一次方程组的解法,利用消元进行求解.题目比较简单,但需要认真细心.

 20.解不等式组:,并在数轴上表示出不等式组的解集.

 考点:解一元一次不等式组;在数轴上表示不等式的解集.

 专题:计算题.

 分析:分别解两个不等式得到x<4和x≥3,则可根据大小小大中间找确定不等式组的解集,然后利用数轴表示解集.

 解答:解:,

 解①得x<4,

 解②得x≥3,

 所以不等式组的解集为3≤x<4,

 用数轴表示为:

 点评:本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.

 21.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;

 若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.

 考点:解一元一次不等式;一元一次方程的解;一元一次不等式的整数解.

 分析:(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集;

 根据(1)中的x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a的一元一次方程2×(﹣2)﹣a×(﹣2)=3,通过解该方程即可求得a的值.

 解答:解:(1)5(x﹣2)+8<6(x﹣1)+7

 5x﹣10+8<6x﹣6+7

 5x﹣2<6x+1

 ﹣x<3

 x>﹣3.

 由(1)得,最小整数解为x=﹣2,

 ∴2×(﹣2)﹣a×(﹣2)=3

 ∴a=.

 点评:本题考查了解一元一次不等式、一元一次方程的解以及一元一次不等式的整数解.解不等式要依据不等式的基本性质:

 (1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;

 不等式的两边同时乘以或除以同一个正数不等号的方向不变;

 (3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.

 22.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.

 (1)请在图中画出平移后的′B′C′;

 △ABC的面积为3;

 (3)若AB的长约为5.4,求出AB边上的高(结果保留整数)

 考点:作图-平移变换.

 分析:(1)根据图形平移的性质画出平移后的△A′B′C′即可;

 根据三角形的面积公式即可得出结论;

 (3)设AB边上的高为h,根据三角形的面积公式即可得出结论.

 解答:解:(1)如图所示;

 S△ABC=×3×2=3.

 故答案为:3;

 (3)设AB边上的高为h,则AB?h=3,

 即×5.4h=3,解得h≈1.

 点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.

 23.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.

 考点:三角形内角和定理;三角形的角平分线、中线和高.

 分析:根据直角三角形两锐角互余求出∠CAE,再根据角平分线的定义可得∠DAE=∠CAE,进而得出∠ADE.

 解答:解:∵AE是△ABC边上的高,∠ACB=40°,

 ∴∠CAE=90°﹣∠ACB=90°﹣40°=50°,

 ∴∠DAE=∠CAE=×50°=25°,

 ∴∠ADE=65°.

 点评:本题考查了三角形的内角和定理,角平分线的定义,是基础题,熟记定理与概念并准确识图是解题的关键.

 24.若不等式组的解集是﹣1

 (1)求代数式(a+1)(b﹣1)的值;

 若a,b,c为某三角形的三边长,试求|c﹣a﹣b|+|c﹣3|的值.

 考点:解一元一次不等式组;三角形三边关系.

 分析:先把a,b当作已知条件求出不等式组的解集,再与已知解集相比较求出a,b的值.

 (1)直接把ab的值代入即可得出代数式的值;

 根据三角形的三边关系判断出c﹣a﹣b的符号,再去绝对值符号.合并同类项即可.

 解答:解:,

 由①得,x<,

 由②得,x>2b﹣3,

 ∵不等式组的解集是﹣1

 ∴=3,2b﹣3=﹣1,

 ∴a=5,b=2.

 (1)(a+1)(b﹣1)=(5+1)=6;

 ∵a,b,c为某三角形的三边长,

 ∴5﹣2

 ∴c﹣a﹣b0,

 ∴原式=a+b﹣c+c﹣3

 =a+b﹣3

 =5+2﹣3

 =4.

 点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

 25.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.

 ①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.

 题设(已知):①②.

 结论(求证):③.

 证明:省略.

 考点:命题与定理;平行线的判定与性质.

 专题:计算题.

 分析:可以有①②得到③:由于AB⊥BC、CD⊥BC得到AB∥CD,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,则∠EBC=∠FCB,可得到∠ABC﹣∠EBC=∠DCB﹣∠FCB,即有∠1=∠2.

 解答:已知:如图,AB⊥BC、CD⊥BC,BE∥CF.

 求证:∠1=∠2.

 证明:∵AB⊥BC、CD⊥BC,

 ∴AB∥CD,

 ∴∠ABC=∠DCB,

 又∵BE∥CF,

 ∴∠EBC=∠FCB,

 ∴∠ABC﹣∠EBC=∠DCB﹣∠FCB,

 ∴∠1=∠2.

 故答案为①②;③;省略.

 点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题称为定理.也考查了平行线的性质.

 26.某商场用18万元购进A、B两种商品,其进价和售价如下表:

 AB

 进价(元/件)12001000

 售价(元/件)13801200

 (1)若销售完后共获利3万元,该商场购进A、B两种商品各多少件;

 若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.

 ①问共有几种进货方案?

 ②要保证利润,你选择哪种进货方案?

 考点:一元一次不等式的应用;二元一次方程组的应用.

 分析:(1)由题意可知本题的等量关系,即“两种商品总成本为18万元”和“共获利3万元”,根据这两个等量关系,可列出方程组,再求解;

 根据题意列出不等式组,解答即可.

 解答:解:(1)设购进A种商品x件,B种商品y件.

 根据题意得

 化简得,

 解得,

 答:该商场购进A种商品100件,B种商品60件;

 设购进A种商品x件,B种商品y件.

 根据题意得:

 解得:,,,,,

 故共有5种进货方案

 AB

 方案一25件150件

 方案二20件156件

 方案三15件162件

 方案四10件168件

 方案五5件174件

 ②因为B的利润大,所以若要保证利润,选择进A种商品5件,B种商品174件.

 点评:此题考查二元一次方程组和一元一次不等式的应用,解答本题的关键是将现实生活中的事件与数学思想联系起来,读懂题意,找出等量关系,列方程求解.

高考改为3+3的模式 我们现行的是3+X的模式(语文、数学、英语+文综/理综} 改革后变为3+3 3指的语数外,所有学生必考,数学不再分文数理数,每科150分,英语给与两次机会,试题难度相差不大,分值150分。 第二个3是自选科目,从政治、历史、地理、物理、化学、生物里自选三门参加高考,选你所擅长的或者你所报考的大学要求的科目考试,这三门计入高考成绩,其他三门达到合格线即可,你选的三门计分数,越高越好 举个例子 某同学参加2017年高考,擅长政治、物理、地理 那么他的考试科目为:语文+数学+英语+政治+地理+物理 其他科目考到C级就可以了

文章标签: # 不等式 # 解答 # 高考