您现在的位置是: 首页 > 教育研究 教育研究
2015福建高考数学答案分析,2015福建高考数学答案
tamoadmin 2024-06-16 人已围观
简介1.有关数学高考题2.2020高二数学暑假作业答案大全3.2015年福建高考数学难不难,难度系数解读点评解析4.2019年福建高考数学试卷试题及答案解析(答案WORD版)5.2022福建福州5月质检/三检数学答案解析及试卷6.急求2012福建高考文科数学题目及答案福建高考日程安排如下:2023年福建高考时间为6月7日-6月9日。6月7日考语文、数学;6月8日考物理/历史、英语;6月9日考化学、地理
1.有关数学高考题
2.2020高二数学暑假作业答案大全
3.2015年福建高考数学难不难,难度系数解读点评解析
4.2019年福建高考数学试卷试题及答案解析(答案WORD版)
5.2022福建福州5月质检/三检数学答案解析及试卷
6.急求2012福建高考文科数学题目及答案
福建高考日程安排如下:
2023年福建高考时间为6月7日-6月9日。
6月7日考语文、数学;6月8日考物理/历史、英语;6月9日考化学、地理、政治、生物。
福建省普通高考实行“3+1+2”模式,考试科目由全国统考科目和普通高中学业水平选择性考试科目组成。其中“3”为语文、数学、外语3门全国统考科目。“1”为考生在物理、历史2门首选科目中选择1门,“2”为考生在思想政治、地理、化学、生物学4门再选科目中选择2门。
全国统考科目中的外语分英语、俄语、日语、法语、德语、西班牙语等6个语种,由考生在报名时任选其中一个语种参加考试。
普通高等学校招生全国统一考试(NationwideUnifiedExaminationforAdmissionsto GeneralUniversitiesandColleges),简称“高考”,是合格的高中毕业生或具有同等学力的考生参加的选拔性考试。
普通高等学校招生全国统一考试。教育部要求各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。
参加考试的对象一般是全日制普通高中毕业生和具有同等学力的中华人民共和国公民,招生分理工农医(含体育)、文史(含外语和艺术)两大类。普通高等学校根据考生成绩,按照招生章程计划和扩招,德智体美劳全面衡量,择优录取。
2015年,高考逐步取消体育特长生、奥林匹克竞赛等6项加分项目。2016年,教育部严禁宣传“高考状元”、“高考升学率”,加强对中学高考标语的管理,坚决杜绝任何关于高考的炒作。
有关数学高考题
一、新高考I卷高考数学试卷真题和答案解析新高考I卷高考数学试卷真题和答案解析正在快马加鞭的整理当中,考试结束后我们第一时间发布word文字版。考生可以在线点击阅览:
二、新高考I卷高考数学卷答题技巧
一、规范书写
高考文科数学答题技巧之一就是规范书写,这一点是文理通用的技巧。卷面评分标准就是规范度,这就要求不但要对、而且要全且规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,“感情分”也就相应低了,所以高考答题书写要工整,保证卷面能得分。
二、讲究策略
对于高考文科数学题要力求做的对、全、得满分,高考文科数学有两种常用方法:
1。分步解答:对于疑难问题,考生可以将它划分为一系列的步骤,先解决问题的一部分,能解到几步就写几步,每进行一步就可得到这一步的分数,也可以把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。从局部到整体,形成思路,获得解题成功。在高考文科数学答题过程中尽量多的列举应用到的公式。
2。跳步解答:当文科数学在解题的某一环节出现问题时,可以跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
三、合理分配时间
1、文科数学就是和时间的斗争。高考文科数学试卷一发下来后,首先把全部问题看一遍。找出其中看上去最容易解答的题,然后假定步骤,思考怎么样的顺序解题才最好。
2、切忌不看题目盲目背题,要仔细审题,清楚题目要求你解决什么问题,然后有条不紊迅速解题,提高准确率。
3、解题格式要规范,重点步骤要突出。
4、选择题时间控制在35分中以内。小题小做、巧做、简单做,选择题和填空题要多用数形结合、特殊值验证法等技巧,节约时间。
5、保持心静,以不变应万变。切莫因旁人的翻卷或其他行为干扰自己的解决思路。这些都是高考文科数学应试答题高分技巧。
四、掌握文科数学失分原因
①对题意缺乏正确的理解,应做到慢审题快做题;
②公式记忆不牢,考前一定要熟悉公式、定理、性质等;
③思维不严谨,不要忽视易错点;
④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;
⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;
⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
正确运用高考文科数学答题技巧,不仅可以预防各种心理障碍造成的不合理丢分和计算失误及笔误,而且能运用科学的检索方法,考出最佳成绩。
三、新高考I卷哪些省份使用
适用地区:山东、福建、湖北、江苏、广东、湖南、河北
四、新高考I卷难吗
河北考生:
考完数学,从考场出来那一刻,头都是沉重的,心里说不出的滋味,感觉填空看着都是灰色。今年的数学试题,总体上出的是中规中矩,但是题型很新颖,很抽象,和平时做的题目完全不是一个水平的题目。选择题部分,也比平时难一些,看着题目很简单,但就是不知道怎么入手解题,大题部分,就更崩溃了,只有两道是有点把握得,剩下的都只答了一半。
总体来讲,试题是比平时要难的,至少难个20分左右。平时也都能考个100来分,这下估计七八十就算幸运了。
山东考生:
我觉得数学试题难度还行,今年发挥的还可以,平时都能考个120分,这次感觉会少一些,题目比去年要难一些。我有做过去年的数学试卷,考了127,今年的数学,能110就很知足了。主要是题目比较烧脑,不像平时的题目那样,一看就知道大概咋解题,高考的数学题,估计很多考生都要比平时低一些,今年的考生应该更明显,确实题目是难了一些。 五、安徽高考数学试卷答案解析 一.2022年新高考I卷高考语文试卷真题和答案解析[Word文字版] ;
2020高二数学暑假作业答案大全
1. (05年广东卷)已知数列 满足 , , ….若 ,则(B)
(A) (B)3(C)4(D)5
2. (05年福建卷)3.已知等差数列 中, 的值是 ( A )
A.15 B.30 C.31 D.64
3. (05年湖南卷)已知数列 满足 ,则 = (B )
A.0 B. C. D.
4. (05年湖南卷)已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
= (C)
A.2 B. C.1 D.
5. (05年湖南卷)设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2005(x)=(C)
A.sinx B.-sinx C.cosx D.-cosx
6. (05年江苏卷)在各项都为正数的等比数列{an}中,首项a1=3 ,前三项和为21,则a3+ a4+ a5=(C )
( A ) 33 ( B ) 72 ( C ) 84 ( D )189
7. (05年全国卷II) 如果数列 是等差数列,则(B )
(A) (B) (C) (D)
8. (05年全国卷II) 11如果 为各项都大于零的等差数列,公差 ,则(B)
(A) (B) (C) (D)
9. (05年山东卷) 是首项 =1,公差为 =3的等差数列,如果 =2005,则序号 等于(C )
(A)667 (B)668 (C)669 (D)670
10. (05年上海)16.用n个不同的实数a1,a2,┄an可得n!个不同的排列,每个排列为一行写成 1 2 3
一个n!行的数阵.对第i行ai1,ai2,┄ain,记bi=- ai1+2ai2-3 ai3+┄+(-1)nnain, 1 3 2
i=1,2,3, ┄,n!.用1,2,3可你数阵如右,由于此数阵中每一列各数之和都 2 1 3
是12,所以,b1+b2+┄+b6=-12+2 12-3 12=-24.那么,在用1,2,3,4,5形成 2 3 1
的数阵中, b1+b2+┄+b120等于 3 1 2
3 2 1
[答]( C )
(A)-3600 (B) 1800 (C)-1080 (D)-720
11. (05年浙江卷) =( C )
(A) 2 (B) 4 (C) (D)0
12. (05年重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( C)
(A) 4;
(B) 5;
(C) 6;
(D) 7。
13、(04年浙江文理(3)) 已知等差数列 的公差为2,若 成等比数列, 则 =
(A) –4 (B) –6 (C) –8 (D) –10
14、(04年全国卷四文理6).等差数列 中, ,则此数列前20项和等于
A.160 B.180 C.200 D.220
15、(04年全国三文(4))等比数列 中 ,则 的前4项和为
A. 81 B. 120 C. 125 D. 192
16、(04年天津卷理8.) 已知数列 ,那么“对任意的 ,点 都在直线 上”是“ 为等差数列”的
A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要条件
17、(04年全国卷三理⑶)设数列 是等差数列, ,Sn是数列 的前n项和,则( )
A.S4<S5 B.S4=S5 C.S6<S5 D.S6=S5
18.(2003天津文)5.等差数列 ( C )
A.48 B.49 C.50 D.51
19.(2001天津)若Sn是数列{an}的前n项和,且 则 是 ( B )
(A)等比数列,但不是等差数列 (B)等差数列,但不是等比数列
(C)等差数列,而且也是等比数列 (D)既非等比数列又非等差数列
20、(04年湖北卷理8文9).已知数列{ }的前n项和 其中a、b是非零常数,则存在数列{ }、{ }使得( )
A. 为等差数列,{ }为等比数列
B. 和{ }都为等差数列
C. 为等差数列,{ }都为等比数列
D. 和{ }都为等比数列
21、(04年重庆卷理9). 若数列 是等差数列,首项 ,则使前n项和 成立的最大自然数n是:( )
A 4005 B 4006 C 4007 D 4008
二、填空题
1、(05年广东卷)
设平面内有n条直线 ,其中有且仅有两条直线互相平行,任意三角形不过同一点.若用 表示这n条直线交点的个数,则 _____5________;当n>4时, =__ ___________.
2、. (05年北京卷)已知n次多项式 ,
如果在一种算法中,计算 (k=2,3,4,…,n)的值需要k-1次乘法,计算 的值共需要9次运算(6次乘法,3次加法),那么计算 的值共需要 n(n+3) 次运算.
下面给出一种减少运算次数的算法: (k=0, 1,2,…,n-1).利用该算法,计算 的值共需要6次运算,计算 的
值共需要 2n 次运算.
3. (05年湖北卷)设等比数列 的公比为q,前n项和为S?n,若Sn+1,S?n,Sn+2成等差数列,则q的值为 -2 .
4. (05年全国卷II) 在 和 之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_______216 __.
5. (05年山东卷)
6. (05年上海)12、用 个不同的实数 可得到 个不同的排列,每个排列为一行写成一个 行的数阵。对第 行 ,记 , 。例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以, ,那么,在用1,2,3,4,5形成的数阵中, =_-1080_________。
7、计算: =_3 _________。
8. (05年天津卷)设 ,则
9、 (05年天津卷)在数列{an}中, a1=1, a2=2,且 ,
则 =_2600_ ___.
10. (05年重庆卷) = -3 .
11、(04年上海卷理12) 若干个能唯一确定一个数列的量称为该数列的“基本量”.设{an}是公比为q的无穷等比数列,下列{an}的四组量中,一定能成为该数列“基本量”的是第 组.(写出所有符合要求的组号)①S1与S2; ②a2与S3; ③a1与an; ④q与an.其中n为大于1的整数, Sn为{an}的前n项和.(①、④)
12(04年江苏卷15).设数列{an}的前n项和为Sn,Sn= (对于所有n≥1),且a4=54,则a1的数值是__2
13(04年北京文理(14))定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。已知数列 是等和数列,且 ,公和为5,那么 的值为___,且(文:这个数列的前21项和 的值为_____)(理:这个数列的前n项和 的计算公式为__( 3 ;(文:52)理:当n为偶数时, ;当n为奇数时, )
三、解答题
1.(05年北京卷)
设数列{an}的首项a1=a≠ ,且 ,
记 ,n==l,2,3,…?.
(I)求a2,a3;
(II)判断数列{bn}是否为等比数列,并证明你的结论;
(III)求 .
解:(I)a2=a1+ =a+ ,a3= a2= a+ ;
(II)∵ a4=a3+ = a+ , 所以a5= a4= a+ ,
所以b1=a1- =a- , b2=a3- = (a- ), b3=a5- = (a- ),
猜想:{bn}是公比为 的等比数列?
证明如下:
因为bn+1=a2n+1- = a2n- = (a2n-1- )= bn, (n∈N*)
所以{bn}是首项为a- , 公比为 的等比数列?
(III) .
2.(05年北京卷)数列{an}的前n项和为Sn,且a1=1, ,n=1,2,3,……,求
(I)a2,a3,a4的值及数列{an}的通项公式;
(II) 的值.
解:(I)由a1=1, ,n=1,2,3,……,得
, , ,
由 (n≥2),得 (n≥2),
又a2= ,所以an= (n≥2),
∴ 数列{an}的通项公式为 ;
(II)由(I)可知 是首项为 ,公比为 项数为n的等比数列,∴ =
3.(05年福建卷)
已知{ }是公比为q的等比数列,且 成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{ }是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
解:(Ⅰ)由题设
(Ⅱ)若
当 故
若
当
故对于
4. (05年福建卷)已知数列{an}满足a1=a, an+1=1+ 我们知道当a取不同的值时,得到不同的数列,如当a=1时,得到无穷数列:
(Ⅰ)求当a为何值时a4=0;
(Ⅱ)设数列{bn?}满足b1=-1, bn+1= ,求证a取数列{bn}中的任一个数,都可以得到一个有穷数列{an};
(Ⅲ)若 ,求a的取值范围.
(I)解法一:
故a取数列{bn}中的任一个数,都可以得到一个有穷数列{an}
5. (05年湖北卷)设数列 的前n项和为Sn=2n2, 为等比数列,且
(Ⅰ)求数列 和 的通项公式;
(Ⅱ)设 ,求数列 的前n项和Tn.
解:(1):当
故{an}的通项公式为 的等差数列.
设{bn}的通项公式为
故
(II)
两式相减得
6. (05年湖北卷)已知不等式 为大于2的整数, 表示不超过 的最大整数. 设数列 的各项为正,且满足
(Ⅰ)证明
(Ⅱ)猜测数列 是否有极限?如果有,写出极限的值(不必证明);
(Ⅲ)试确定一个正整数N,使得当 时,对任意b>0,都有
解:(Ⅰ)证法1:∵当
即
于是有
所有不等式两边相加可得
由已知不等式知,当n≥3时有,
∵
证法2:设 ,首先利用数学归纳法证不等式
(i)当n=3时, 由
知不等式成立.
(ii)假设当n=k(k≥3)时,不等式成立,即
则
即当n=k+1时,不等式也成立.
由(i)、(ii)知,
又由已知不等式得
(Ⅱ)有极限,且
(Ⅲ)∵
则有
故取N=1024,可使当n>N时,都有
7. (05年湖南卷)已知数列 为等差数列,且
(Ⅰ)求数列 的通项公式;
(Ⅱ)证明
(I)解:设等差数列 的公差为d.
由 即d=1.
所以 即
(II)证明因为 ,
所以
8. (05年湖南卷)自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响. 用xn表示某鱼群在第n年年初的总量,n∈N*,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn2成正比,这些比例系数依次为正常数a,b,c.
(Ⅰ)求xn+1与xn的关系式;
(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不
要求证明)
(Ⅱ)设a=2,b=1,为保证对任意x1∈(0,2),都有xn>0,n∈N*,则捕捞强度b的
最大允许值是多少?证明你的结论.
解(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为
(II)若每年年初鱼群总量保持不变,则xn恒等于x1, n∈N*,从而由(*)式得
因为x1>0,所以a>b.
猜测:当且仅当a>b,且 时,每年年初鱼群的总量保持不变.
(Ⅲ)若b的值使得xn>0,n∈N*
由xn+1=xn(3-b-xn), n∈N*, 知
0<xn<3-b, n∈N*, 特别地,有0<x1<3-b. 即0<b<3-x1.
而x1∈(0, 2),所以
由此猜测b的最大允许值是1.
下证 当x1∈(0, 2) ,b=1时,都有xn∈(0, 2), n∈N*
①当n=1时,结论显然成立.
②假设当n=k时结论成立,即xk∈(0, 2),
则当n=k+1时,xk+1=xk(2-xk?)>0.
又因为xk+1=xk(2-xk)=-(xk-1)2+1≤1<2,
所以xk+1∈(0, 2),故当n=k+1时结论也成立.
由①、②可知,对于任意的n∈N*,都有xn∈(0,2).
综上所述,为保证对任意x1∈(0, 2), 都有xn>0, n∈N*,则捕捞强度b的最大允许值是1.
9. (05年江苏卷)设数列{an}的前项和为 ,已知a1=1, a2=6, a3=11,且 , 其中A,B为常数.
(Ⅰ)求A与B的值;
(Ⅱ)证明数列{an}为等差数列;
(Ⅲ)证明不等式 .
解:(Ⅰ)由 , , ,得 , , .
把 分别代入 ,得
解得, , .
(Ⅱ)由(Ⅰ)知, ,即
, ①
又 . ②
②-①得, ,
即 . ③
又 . ④
④-③得, ,
∴ ,
∴ ,又 ,
因此,数列 是首项为1,公差为5的等差数列.
(Ⅲ)由(Ⅱ)知, .考虑
.
.
∴ .
即 ,∴ .
因此, .
10. (05年辽宁卷)已知函数 设数列 }满足 ,数列 }满足
(Ⅰ)用数学归纳法证明 ;
(Ⅱ)证明
解:(Ⅰ)证明:当 因为a1=1,
所以 ………………2分
下面用数学归纳法证明不等式
(1)当n=1时,b1= ,不等式成立,
(2)假设当n=k时,不等式成立,即
那么 ………………6分
所以,当n=k+1时,不等也成立。
根据(1)和(2),可知不等式对任意n∈N*都成立。 …………8分
(Ⅱ)证明:由(Ⅰ)知,
所以
…………10分
故对任意 ………………(12分)
11. (05年全国卷Ⅰ) 设正项等比数列 的首项 ,前n项和为 ,且 。
(Ⅰ)求 的通项;
(Ⅱ)求 的前n项和 。
解:(Ⅰ)由 得
即
可得
因为 ,所以 解得 ,因而
(Ⅱ)因为 是首项 、公比 的等比数列,故
则数列 的前n项和
前两式相减,得
即
12. (05年全国卷Ⅰ)
设等比数列 的公比为 ,前n项和 。
(Ⅰ)求 的取值范围;
(Ⅱ)设 ,记 的前n项和为 ,试比较 与 的大小。
解:(Ⅰ)因为 是等比数列,
当
上式等价于不等式组: ①
或 ②
解①式得q>1;解②,由于n可为奇数、可为偶数,得-1<q<1.
综上,q的取值范围是
(Ⅱ)由 得
于是
又∵ >0且-1< <0或 >0
当 或 时 即
当 且 ≠0时, 即
当 或 =2时, 即
13. (05年全国卷II) 已知 是各项为不同的正数的等差数列, 、 、 成等差数列.又 , .
(Ⅰ) 证明 为等比数列;
(Ⅱ) 如果数列 前3项的和等于 ,求数列 的首项 和公差 .
(I)证明:∵ 、 、 成等差数列
∴2 = + ,即
又设等差数列 的公差为 ,则( - ) = ( -3 )
这样 ,从而 ( - )=0
∵ ≠0
∴ = ≠0
∴
∴ 是首项为 = ,公比为 的等比数列。
(II)解。∵
∴ =3
∴ = =3
14.( 05年全国卷II)
已知 是各项为不同的正数的等差数列, 、 、 成等差数列.又 , .
(Ⅰ) 证明 为等比数列;
(Ⅱ) 如果无穷等比数列 各项的和 ,求数列 的首项 和公差 .
(注:无穷数列各项的和即当 时数列前 项和的极限)
解:(Ⅰ)设数列{an}的公差为d,依题意,由 得
即 ,得 因
当 =0时,{an}为正的常数列 就有
当 = 时, ,就有
于是数列{ }是公比为1或 的等比数列
(Ⅱ)如果无穷等比数列 的公比 =1,则当 →∞时其前 项和的极限不存在。
因而 = ≠0,这时公比 = ,
这样 的前 项和为
则S=
由 ,得公差 =3,首项 = =3
15. (05年全国卷III)
在等差数列 中,公差 的等差中项.
已知数列 成等比数列,求数列 的通项
解:由题意得: ……………1分
即 …………3分
又 …………4分
又 成等比数列,
∴该数列的公比为 ,………6分
所以 ………8分
又 ……………………………………10分
所以数列 的通项为 ……………………………12分
16. (05年山东卷)
已知数列 的首项 前 项和为 ,且
(I)证明数列 是等比数列;
(II)令 ,求函数 在点 处的导数 并比较 与 的大小.
解:由已知 可得 两式相减得
即 从而 当 时 所以 又 所以 从而
故总有 , 又 从而 即数列 是等比数列;
(II)由(I)知
因为 所以
从而 =
= - =
由上 - =
=12 ①
当 时,①式=0所以 ;
当 时,①式=-12 所以
当 时, 又
所以 即① 从而
17.(05年上海)本题共有2个小题,第1小题满分6分, 第2小题满分8分.
假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,
(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?
[解](1)设中低价房面积形成数列{an},由题意可知{an}是等差数列,
其中a1=250,d=50,则Sn=250n+ =25n2+225n,
令25n2+225n≥4750,即n2+9n-190≥0,而n是正整数, ∴n≥10.
到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米.
(2)设新建住房面积形成数列{bn},由题意可知{bn}是等比数列,
其中b1=400,q=1.08,则bn=400?(1.08)n-1?0.85.
由题意可知an>0.85 bn,有250+(n-1)?50>400?(1.08)n-1?0.85.
由计箅器解得满足上述不等式的最小正整数n=6.
到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.
18. (05年天津卷)
已知 .
(Ⅰ)当 时,求数列 的前n项和 ;
(Ⅱ)求 .
(18)解:(Ⅰ)当 时, .这时数列 的前 项和
. ①
①式两边同乘以 ,得 ②
①式减去②式,得
若 ,
,
若 ,
(Ⅱ)由(Ⅰ),当 时, ,则 .
当 时,
此时, .
若 , .
若 , .
19. (05年天津卷)若公比为c的等比数列{ }的首项 =1且满足: ( =3,4,…)。
(I)求c的值。
(II)求数列{ }的前 项和 。
20. (05年浙江卷)已知实数a,b,c成等差数列,a+1,了+1,c+4成等比数列,求a,b,c.
解:由题意,得 由(1)(2)两式,解得
将 代入(3),整理得
解得 或
故 , 或
经验算,上述两组数符合题意。
21(05年浙江卷)设点 ( ,0), 和抛物线 :y=x2+an x+bn(n∈N*),其中an=-2-4n- , 由以下方法得到:
x1=1,点P2(x2,2)在抛物线C1:y=x2+a1x+b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,…,点 在抛物线 :y=x2+an x+bn上,点 ( ,0)到 的距离是 到 上点的最短距离.
(Ⅰ)求x2及C1的方程.
(Ⅱ)证明{ }是等差数列.
解:(I)由题意,得 。
设点 是 上任意一点,则
令 则
由题意,得 即
又 在 上,
解得
故 方程为
(II)设点 是 上任意一点,则
令 ,则 .
由题意得g ,即
又
即 (*)
下面用数学归纳法证明
①当n=1时, 等式成立。
②假设当n=k时,等式成立,即
则当 时,由(*)知
又
即当 时,等式成立。
由①②知,等式对 成立。
是等差数列。
22. (05年重庆卷)数列{an}满足a1?1且8an?1?16an?1?2an?5?0 (n?1)。记 (n?1)。
(1) 求b1、b2、b3、b4的值;
(2) 求数列{bn}的通项公式及数列{anbn}的前n项和Sn。
解法一:
(I)
(II)因 ,
故猜想
因 ,(否则将 代入递推公式会导致矛盾)。
∵
故 的等比数列.
,
解法二:
(Ⅰ)由
整理得
(Ⅱ)由
所以
故
由 得
故
解法三:
(Ⅰ)同解法一
(Ⅱ)
从而
故
23. (05年重庆卷)数列{an}满足 .
(Ⅰ)用数学归纳法证明: ;
(Ⅱ)已知不等式 ,其中无理数e=2.71828….
(Ⅰ)证明:(1)当n=2时, ,不等式成立.
(2)假设当 时不等式成立,即
那么 . 这就是说,当 时不等式成立.
根据(1)、(2)可知: 成立.
(Ⅱ)证法一:
由递推公式及(Ⅰ)的结论有
两边取对数并利用已知不等式得
故
上式从1到 求和可得
即
(Ⅱ)证法二:
由数学归纳法易证 成立,故
令
取对数并利用已知不等式得
上式从2到n求和得
因
故 成立
24. (05年江西卷)已知数列{an}的前n项和Sn满足Sn-Sn-2=3 求数列{an}的通项公式.
解:方法一:先考虑偶数项有:
………
同理考虑奇数项有:
………
综合可得
方法二:因为
两边同乘以 ,可得:
令
所以
………
又
∴
∴
25. (05年江西卷)
已知数列
(1)证明
(2)求数列 的通项公式an.
解:(1)方法一 用数学归纳法证明:
1°当n=1时,
∴ ,命题正确.
2°假设n=k时有
则
而
又
∴ 时命题正确.
由1°、2°知,对一切n∈N时有
方法二:用数学归纳法证明:
1°当n=1时, ∴ ;
2°假设n=k时有 成立,
令 , 在[0,2]上单调递增,所以由假设
有: 即
也即当n=k+1时 成立,所以对一切
(2)下面来求数列的通项: 所以
,
又bn=-1,所以
26、(04年全国卷四文18).已知数列{ }为等比数列, (Ⅰ)求数列{ }的通项公式;
(Ⅱ)设 是数列{ }的前 项和,证明
解:(I)设等比数列{an}的公比为q,则a2=a1q, a5=a1q4. 依题意,得方程组a1q=6, a1q4=162.解此方程组,得a1=2, q=3.故数列{an}的通项公式为an=2?3n-1
(II)
27、(04年全国三文⒆)设公差不为零的等差数列{an},Sn是数列{an}的前n项和,且 , ,求数列{an}的通项公式.
解:设数列{an}的公差为d(d≠0),首项为a1,由已知得: .解之得: , 或 (舍)
28(04年全国卷三理(22))已知数列{an}的前n项和Sn满足:Sn=2an +(-1)n,n≥1.⑴写出求数列{an}的前3项a1,a2,a3;
⑵求数列{an}的通项公式;⑶证明:对任意的整数m>4,有
解:⑴当n=1时,有:S1=a1=2a1+(-1) a1=1;当n=2时,有:S2=a1+a2=2a2+(-1)2 a2=0;
当n=3时,有:S3=a1+a2+a3=2a3+(-1)3 a3=2;综上可知a1=1,a2=0,a3=2;
⑵由已知得: ,化简得:
上式可化为: ,故数列{ }是以 为首项, 公比为2的等比数列.故 ∴
数列{ }的通项公式为:
⑶由已知得:
. 故 ,( m>4)
29、(04年天津卷文20. )设 是一个公差为 的等差数列,它的前10项和 且 , , 成等比数列。(1)证明 ;(2)求公差 的值和数列 的通项公式
证明:因 , , 成等比数列,故 ,而 是等差数列,有 ,
于是 ,即 ,化简得
(2)解:由条件 和 ,得到 ,由(1), ,代入上式得 ,故 , ,
30(04年浙江卷文(17))、已知数列 的前n项和为 (Ⅰ)求 ;(Ⅱ)求证数列 是等比数列
解: (Ⅰ)由 ,得 ,∴ ,又 ,即 ,得 .(Ⅱ)当n>1时, 得 所以 是首项 ,公比为 的等比数列
31(04年广东卷17). 已知 成公比为2的等比数列( 也成等比数列. 求 的值
解:∵α,β,γ成公比为2的等比数列,∴β=2α,γ=4α,∵sinα,sinβ,sinγ成等比数列
当cosα=1时,sinα=0,与等比数列的首项不为零,故cosα=1应舍去,
32(04年湖南文20). 已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,a1,2a7,3a4 成等差数列.(I)证明 12S3,S6,S12-S6成等比数列;(II)求和Tn=a1+2a4+3a7+…+na3n
(Ⅰ)证明 由 成等差数列, 得 ,即 变形得 所以 (舍去).由
得
所以12S3,S6,S12-S6成等比数列
(Ⅱ)解:
即 ①
①× 得:
所以
33、(04年江苏卷20).设无穷等差数列{an}的前n项和为Sn.(Ⅰ)若首项 32 ,公差 ,求满足 的正整数k;(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有 成立
解:(1) ;(2) 或 或
34(04年全国卷一理15).已知数列{an},满足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项
( 答案 )
35(04年全国卷一理22).已知数列 ,且a2k=a2k-1+(-1)K, a2k+1=a2k+3k, 其中k=1,2,3,…….
(I)求a3, a5;(II)求{ an}的通项公式
解:(I)a2=a1+(-1)1=0,a3=a2+31=3. a4=a3+(-1)2=4, a5=a4+32=13, 所以,a3=3,a5=13.
(II) a2k+1=a2k+3k = a2k-1+(-1)k+3k, 所以a2k+1-a2k-1=3k+(-1)k, 同理a2k-1-a2k-3=3k-1+(-1)k-1,
……a3-a1=3+(-1).
所以(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1)=(3k+3k-1+…+3)+[(-1)k+(-1)k-1+…+(-1)],
由此得a2k+1-a1= (3k-1)+ [(-1)k-1],于是a2k+1=
a2k= a2k-1+(-1)k= (-1)k-1-1+(-1)k= (-1)k=1
{an}的通项公式为: 当n为奇数时,an?= 当n为偶数时,
36(04年全国卷一文17). 等差数列{ }的前n项和记为Sn.已知
(Ⅰ)求通项 ;(Ⅱ)若Sn=242,求n
解:(Ⅰ)由 得方程组 解得
所以 (Ⅱ)由 得方程
解得
37(04年全国卷二理(19))、数列{an}的前n项和记为Sn,已知a1=1,an+1= Sn(n=1,2,3,…)
证明:(Ⅰ)数列{ }是等比数列;(Ⅱ)Sn+1=4an
证(I)由a1=1,an+1= Sn(n=1,2,3,…),知a2= S1=3a1, , ,∴
又an+1=Sn+1-Sn(n=1,2,3,…),则Sn+1-Sn= Sn(n=1,2,3,…),∴nSn+1=2(n+1)Sn, (n=1,2,3,…).故数列{ }是首项为1,公比为2的等比数列
证(II) 由(I)知, ,于是Sn+1=4(n+1)? =4an(n )
又a2=3S1=3,则S2=a1+a2=4=4a1,因此对于任意正整数n≥1都有Sn+1=4an
38(04年全国卷二文(17))、已知等差数列{an},a2=9,a5 =21
(Ⅰ)求{an}的通项公式;(Ⅱ)令bn= ,求数列{bn}的前n项和Sn
解:a5-a2=3d,d=4,an=a2+(n-2)d=9+4(n-2)=4n+1;{bn}是首项为32公比为16的等比数列,Sn= .
2015年福建高考数学难不难,难度系数解读点评解析
掌握基础知识,加深对一些数学公式和概念的理解。课后习题一定要认真做,那些题都是对每一个章节的知识点 由浅入深的一个引导和巩固。下面我整理2020 高二数学 暑假作业答案大全,欢迎阅读。
2020高二数学暑假作业答案大全1
1.(09年重庆高考)直线与圆的位置关系为()
A.相切B.相交但直线不过圆心
C.直线过圆心D.相离
2.方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a、b、c的值
依次为()
A.2、4、4;B.-2、4、4;
C.2、-4、4;D.2、-4、-4
3(2011年重庆高考)圆心在轴上,半径为1,且过点(1,2)的圆的方程为()
A.B.
C.D.
4.直线3x-4y-4=0被圆(x-3)2+y2=9截得的弦长为()
A.B.4
C.D.2
5.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系是()
A.相切B.相交
C.相离D.相切或相交
6、圆关于直线对称的圆的方程是().
A.
B.
C.
D.
7、两圆x2+y2-4x+6y=0和x2+y2-6x=0的连心线方程为().
A.x+y+3=0B.2x-y-5=0
C.3x-y-9=0D.4x-3y+7=0
8.过点的直线中,被截得最长弦所在的直线方程为()
A.B.
C.D.
9.(2011年四川高考)圆的圆心坐标是
10.圆和
的公共弦所在直线方程为____.
11.(2011年天津高考)已知圆的圆心是直线与轴的交点,且圆与直线相切,则圆的方程为.
12(2010山东高考)已知圆过点,且圆心在轴的正半轴上,直线被该圆所截得的弦长为,则圆的标准方程为____________
13.求过点P(6,-4)且被圆截得长为的弦所在的直线方程.
14、已知圆C的方程为x2+y2=4.
(1)直线l过点P(1,2),且与圆C交于A、B两点,若|AB|=23,求直线l的方程;
(2)圆C上一动点M(x0,y0),ON→=(0,y0),若向量OQ→=OM→+ON→,求动点Q的轨迹方程
"人"的结构就是相互支撑,"众"人的事业需要每个人的参与。
2020高二数学暑假作业答案大全2
1.点的内部,则的取值范围是()
A.B.
C.D.
2.(09年上海高考)点P(4,-2)与圆上任一点连续的中点轨迹方程是()
A.
B.
C.
D.
3.(09年陕西高考)过原点且倾斜角为的直线被圆所截得的弦长为
A.B.2C.D.2
4.已知方程x2+y2+4x-2y-4=0,则x2+y2的值是()
A.9B.14C.14-D.14+
5、(09年辽宁高考)已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()
A.
B.
C.
D.
6、两圆相交于两点(1,3)和(m,1),两圆的圆心都在直线x-y+c2=0上,则m+c的值是()
A.-1B.2C.3D.0
7.(2011安徽)若直线过圆的圆心,则a的值为()
A.1B.1C.3D.3
8.(09年广东高考)设圆C与圆x2+(y-3)2=1外切,与直线y=0相切,则C的圆心轨迹为()
A.抛物线B.双曲线
C.椭圆D.圆
9.(09年天津高考)若圆与圆的公共弦长为,则a=________.
10.(09年广东高考)以点(2,)为圆心且与直线相切的圆的方程是.
11.(09年陕西高考)过原点且倾斜角为的直线被圆所截得的弦长为.
12、过点P(-3,-32)且被圆x2+y2=25所截得的弦长为8的直线方程为__________.
13、已知圆C的圆心在直线l1:x-y-1=0上,与直线l2:4x+3y+14=0相切,且截得直线l3:3x+4y+10=0所得弦长为6,求圆C的方程.
2020高二数学暑假作业答案大全3
一
1、已知点P是抛物线y2=4x上的动点,那么点P到点A(-1,1)的距离与点P到直线x=-1距离之和最小值是。若B(3,2),则最小值是
2、过抛物线y2=2px(p>0)的焦点F,做倾斜角为的直线与抛物线交于两点,若线段AB的长为8,则p=
3、将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则n=_________
4、在抛物线y=x2+ax-5(a≠0)上取横坐标为x1=-4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与该抛物线和圆相切,则抛物线的顶点坐标是_______
二
1.(本题满分12分)有6名同学站成一排,求:
(1)甲不站排头也不站排尾有多少种不同的排法:
(2)甲不站排头,且乙不站排尾有多少种不同的排法:
(3)甲、乙、丙不相邻有多少种不同的排法.
2.(12分)甲、乙两人参加一次 英语口语 考试,已知在编号为1~10的10道试题中,甲能答对编号为1~6的6道题,乙能答对编号为3~10的8道题,规定每位考生都从备选题中抽出3道试题进行测试,至少答对2道才算合格,
(1)求甲答对试题数的概率分布及数学期望;
(2)求甲、乙两人至少有一人考试合格的概率.
三
1.直线与圆的位置关系为()
A.相切B.相交但直线不过圆心
C.直线过圆心D.相离
2.方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a、b、c的值依次为()
A.2、4、4;B.-2、4、4;
C.2、-4、4;D.2、-4、-4
3圆心在轴上,半径为1,且过点(1,2)的圆的方程为()
4.直线3x-4y-4=0被圆(x-3)2+y2=9截得的弦长为()
5.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系是()
A.相切B.相交
C.相离D.相切或相交
2020高二数学暑假作业答案大全4
(一)选择题(每个题5分,共10小题,共50分)
1、抛物线上一点的纵坐标为4,则点与抛物线焦点的距离为()
A2B3C4D5
2、对于抛物线y2=2x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是()
A(0,1)B(0,1)CD(-∞,0)
3、抛物线y2=4ax的焦点坐标是()
A(0,a)B(0,-a)C(a,0)D(-a,0)
4、设A(x1,y1),B(x2,y2)是抛物线y2=2px(p>0)上的两点,并且满足OA⊥OB.则y1y2等于
()
A–4p2B4p2C–2p2D2p2
5、已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()
A.(,-1)B.(,1)C.(1,2)D.(1,-2)
6、已知抛物线的焦点为,准线与轴的交点为,点在上且,则的面积为()
(A)(B)(C)(D)
7、直线y=x-3与抛物线交于A、B两点,过A、B两点向
抛物线的准线作垂线,垂足分别为P、Q,则梯形APQB的面积为()
(A)48.(B)56(C)64(D)72.
8、(2011年高考广东卷文科8)设圆C与圆外切,与直线相切.则C的圆心轨迹为()
A.抛物线B.双曲线C.椭圆D.圆
9、已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为
(A)(B)(C)(D)
10、(2011年高考山东卷文科9)设M(,)为抛物线C:上一点,F为抛物线C的焦点,以F为圆心、为半径的圆和抛物线C的准线相交,则的取值范围是
(A)(0,2)(B)[0,2](C)(2,+∞)(D)[2,+∞)
(二)填空题:(每个题5分,共4小题,共20分)
11、已知点P是抛物线y2=4x上的动点,那么点P到点A(-1,1)的距离与点P到直线x=-1距离之和最小值是。若B(3,2),则最小值是
12、过抛物线y2=2px(p>0)的焦点F,做倾斜角为的直线与抛物线交于两点,若线段AB的长为8,则p=
13、将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则n=_________
14、在抛物线y=x2+ax-5(a≠0)上取横坐标为x1=-4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与该抛物线和圆相切,则抛物线的顶点坐标是_______
(三)解答题:(15、16、17题每题12分,18题14分共计50分)
15、已知过抛物线的焦点,斜率为的直
线交抛物线于()两点,且.
(1)求该抛物线的方程;
(2)为坐标原点,为抛物线上一点,若,求的值.
16、(2011年高考福建卷文科18)(本小题满分12分)
如图,直线l:y=x+b与抛物线C:x2=4y相切于点A。
(1)求实数b的值;
(11)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
17、河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?
18、(2010江西文)已知抛物线:经过椭圆:的两个焦点.
(1)求椭圆的离心率;
(2)设,又为与不在轴上的两个交点,若的重心在抛物线上,求和的方程.
专题三十一:直线与圆锥曲线
命题人:王业兴复核人:祝甜2012-7
一、复习教材
1、回扣教材:阅读教材选修1-1P31----P72或选修2-1P31----P76,及直线部分
2、掌握以下问题:
①直线与圆锥曲线的位置关系是,,。相交时有个交点,相切时有个交点,相离时有个交点。
②判断直线和圆锥曲线的位置关系,通常是将直线的方程代入圆锥曲线的方程,消去y(也可以消去x)得到一个关于变量x(或y)的一元方程,即,消去y得ax2+bx+c=0(此方程称为消元方程)。
当a0时,若有>0,直线和圆锥曲线.;<0,直线和圆锥曲线
当a=0时,得到的是一个一元一次方程则直线和圆锥曲线相交,且只有一个交点,此时,若是双曲线,则直线与双曲线的.平行;若是抛物线,则直线l与抛物线的.平行。
③连接圆锥曲线两个点的线段成为圆锥曲线的弦
设直线的方程,圆锥曲线的方程,直线与圆锥曲线的两个不同交点为,消去y得ax2+bx+c=0,则是它两个不等实根
(1)由根与系数的关系有
(2)设直线的斜率为k,A,B两点之间的距离|AB|==
若消去x,则A,B两点之间的距离|AB|=
④在给定的圆锥曲线中,求中点(m,n)的弦AB所在的直线方程时,通常有两种处理 方法 :(1)由根与系数的关系法:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方程,利用根与系数的关系和中点坐标公式建立等式求解。(2)点差法:若直线与圆锥曲线的两个不同的交点A,B,首先设出交点坐标代入曲线的方程,通过作差,构造出,从而建立中点坐标与斜率的关系。
⑤高考要求
直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔
直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程组是否有实数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法
当直线与圆锥曲线相交时涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化。
二、自测练习:自评(互评、他评)分数:______________家长签名:______________
(一)选择题(每个题5分,共10小题,共50分)
1、已知椭圆则以(1,1)为中点的弦的长度为()
(A)(B)(C)(D)
2、两条渐近线为x+2y=0,x-2y=0,则截直线x-y-3=0所得弦长为的双曲线方程为()
(A)(B)(C)(D)
3、双曲线,过点P(1,1)作直线m,使直线m与双曲线有且只有一个公共点,则满足上述条件的直线m共有()
(A)一条(B)两条(C)三条(D)四条
4、(10?辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么|PF|=().
A.43B.8C.83D.16
5、过点M(-2,0)的直线l与椭圆x2+2y2=2交于P1,P2,线段P1P2的中点为P.设直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于().
A.-12B.-2C.12D.2
6、已知抛物线C的方程为x2=12y,过点A(0,-1)和点B(t,3)的直线与抛物线C没有公共点,则实数t的取值范围是().
A.(-∞,-1)∪(1,+∞)B.-∞,-22∪22,+∞
C.(-∞,-22)∪(22,+∞)D.(-∞,-2)∪(2,+∞)
7、已知点F1,F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2为正三角形,则该双曲线的离心率是().
A.2B.2C.3D.3
8、(12山东)已知椭圆C:的离心率为,双曲线x2-y2=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c的方程为
9、若直线y=kx+2与双曲线x2-y2=6的右支交于不同的两点,则k的取值范围是()
A.-153,153B.0,153C.-153,0D.-153,-1
10、已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线于C相交于A、B两点,若。则k=
(A)1(B)(C)(D)2
(二)填空题(每个题5分,共4小题,共20分)
11、已知椭圆,椭圆上有不同的两点关于直线对称,则的取值范围是。
12、抛物线被直线截得的弦长为,则。
13、已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若为的中点,则抛物线C的方程为。
14、以下同个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若则动点P的轨迹为椭圆;
③方程的两根可分别作为椭圆和双曲线的离心率;
④双曲线有相同的焦点.
其中真命题的序号为(写出所有真命题的序号)
(三)解答题(15、16、17题每题12分,18题14分,共50分)
15.在平面直角坐标系xOy中,经过点(0,2)且斜率为k的直线l与椭圆x22+y2=1有两个不同的交点P和Q.
(1)求k的取值范围;
(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量OP→+OQ→与AB→共线?如果存在,求k值;如果不存在,请说明理由.
16.在直角坐标系xOy上取两个定点A1(-2,0),A2(2,0),再取两个动点N1(0,m),N2(0,n),且mn=3.
(1)求直线A1N1与A2N2交点的轨迹M的方程;
(2)已知点A(1,t)(t>0)是轨迹M上的定点,E,F是轨迹M上的两个动点,如果直线AE的斜率kAE与直线AF的斜率kAF满足kAE+kAF=0,试探究直线EF的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.
17.(09山东)设椭圆E:(a,b>0)过M,N两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由
18.(11山东)在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线于点.
(Ⅰ)求的最小值;
(Ⅱ)若?,
(i)求证:直线过定点;(ii)试问点,能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.
2020高二数学暑假作业答案大全5
一、选择题
1.计算的结果等于()
A.B.C.D.
2.“”是“”的()
A.充分不必要条件.B.必要不充分条件.
C.充要条件.D.既不充分也不必要条件
3.在△ABC中,C=120°,tanA+tanB=23,则tanA?tanB的值为()
A.14B.13C.12D.53
4.已知,(0,π),则=()
A.1B.C.D.1
5.已知则等于()
A.B.C.D.
6.[2012?重庆卷]sin47°-sin17°cos30°cos17°=()
A.B.-12C.12D.
7.设是方程的两个根,则的值为()
A.B.C.1D.3
8.()
A.B.C.D.
二、填空题
9.函数的值为;
10.=;
11.设,利用三角变换,估计在k=l,2,3时的取值情况,对k∈N_时猜想的值域为(结果用k表示).
12.已知角的顶点在坐标原点,始边与x轴的正半轴重合,角的终边与单位圆交点的横坐标是,角的终边与单位圆交点的纵坐标是,则=.
三、解答题
13.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
(1)sin213°+cos217°-sin13°cos17°;
(2)sin215°+cos215°-sin15°cos15°;
(3)sin218°+cos212°-sin18°cos12°;
(4)sin2(-18°)+cos248°-sin(-18°)cos48°;
(5)sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
14.已知函数
(1)求函数f(x)的最小正周期;
(2)若的值.
15.已知在△ABC中,sinA(sinB+cosB)-sinC=0,sinB+cos2C=0,求角A、B、C的大小.
16.已知,,,
(1)求的值;(2)求的值.
链接高考设α为锐角,若cos=45,则sin的值为________.
答案
1~8BABADCAC;9.;10.;11.;12.;
13.(2)三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-a)=34.
证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)
=sin2α+(cos30°cosα+sin30°sinα)2-sinα(cos30°cosα+sin30°sinα)
=sin2α+34cos2α+sinαcosα+14sin2α-sinαcosα-12sin2α=34sin2α+34cos2α=34.
14.(1);(2);15.
16.(1);(2);
2020高二数学暑假作业答案大全6
1?1变化率与导数
1.1.1变化率问题
1.D2.D3.C4.-3Δt-65.Δx+26.3?31
7.(1)0?1(2)0?21(3)2?18.11m/s,10?1m/s9.25+3Δt10.128a+64a2t11.f(Δx)-f(0)Δx=1+Δx(Δx>0),
-1-Δx(Δx<0)
1?1?2导数的概念
1.D2.C3.C4.-15.x0,Δx;x06.67.a=18.a=2
9.-4
10.(1)2t-6(2)初速度为v0=-6,初始位置为x0=1(3)在开始运动后3s,在原点向左8m处改变(4)x=1,v=6
11.水面上升的速度为0?16m/min.提示:Δv=Δh75+15Δh+(Δh)23,
则ΔvΔt=ΔhΔt×75+15Δh+(Δh)23,即limΔt→0ΔvΔt=limΔt→0ΔhΔt×75+15Δh+(Δh)23=limΔt→0ΔhΔt×25,
即v′(t)=25h′(t),所以h′(t)=125×4=0?16(m/min)
1?1?3导数的几何意义(一)
1.C2.B3.B4.f(x)在x0处切线的斜率,y-f(x0)=f′(x0)(x-x0)
5.36.135°7.割线的斜率为3?31,切线的斜率为38.k=-1,x+y+2=0
9.2x-y+4=010.k=14,切点坐标为12,12
11.有两个交点,交点坐标为(1,1),(-2,-8)
1?1?3导数的几何意义(二)
1.C2.A3.B4.y=x+15.±16.37.y=4x-18.1039.19
10.a=3,b=-11,c=9.提示:先求出a,b,c三者之间的关系,即c=3+2a,
b=-3a-2,再求在点(2,-1)处的斜率,得k=a-2=1,即a=3
11.(1)y=-13x-229(2)12512
1?2导数的计算
1?2?1几个常用函数的导数
1.C2.D3.C4.12,05.45°6.S=πr2
7.(1)y=x-14(2)y=-x-148.x0=-3366
9.y=12x+12,y=16x+32.提示:注意点P(3,2)不在曲线上10.证明略,面积为常数2
11.提示:由图可知,点P在x轴下方的图象上,所以y=-2x,则y′=-1x,令y′=-12,得x=4,故P(4,-4)
1?2?2基本初等函数的导数公式及导数的运算法则(一)
1.A2.A3.C4.35.2lg2+2lge6.100!
7.(1)1cos2x(2)2(1-x)2(3)2excosx8.x0=0或x0=2±2
9.(1)π4,π2(2)y=x-11
10.k=2或k=-14.提示:设切点为P(x0,x30-3x20+2x0),则斜率为k=3x20-6x0+2,切线方程为y-(x30-3x20+2x0)=(3x20-6x0+2)(x-x0),因切线过原点,整理后常数项为零,即2x30-3x20=0,得x0=0或x0=32,代入k=3x20-6x0+2,得k=2,或k=-14
11.提示:设C1的切点为P(x1,x21+2x1),则切线方程为:y=(2x1+2)x-x21;设C2的切点为Q(x2-x22+a),则切线方程为:y=-2x2x+x22+a.又因为l是过点P,Q的公切线,所以x1+1=-x2,
-x21=x22+a,消去x2得方程2x21+2x1+1+a=0,因为C1和C2有且仅有一条公切线,所以有Δ=0,解得a=-12,此时切线方程为y=x-14
2基本初等函数的导数公式及导数的运算法则(二)
1.D2.A3.C4.50x(2+5x)9-(2+5x)10x25.336.97.a=1
8.y=2x-4,或y=2x+69.π6
10.y′=x2+6x+62x(x+2)(x+3).提示:y=lnx(x+2)x+3=12[lnx+ln(x+2)-ln(x+3)]
11.a=2,b=-5,c=2,d=-12
1?3导数在研究函数中的应用
1?3?1函数的单调性与导数
1.A2.B3.C4.33,+∞5.单调递减6.①②③
7.函数在(1,+∞),(-∞,-1)上单调递增,在(-1,0),(0,1)上单调递减
8.在区间(6,+∞),(-∞,-2)上单调递增,在(-2,6)上单调递减9.a≤-3
10.a<0,递增区间为:--13a,-13a,递减区间为:-∞,--13a,-13a,+∞
11.f′(x)=x2+2ax-3a2,当a<0时,f(x)的递减区间是(a,-3a);当a=0时,f(x)不存在递减区间;当a>0时,f(x)的递减区间是(-3a,a)
1?3?2函数的极值与导数
1.B2.B3.A4.55.06.4e27.无极值
8.极大值为f-13=a+527,极小值为f(1)=a-1
9.(1)f(x)=13x3+12x2-2x(2)递增区间:(-∞,-2),(1,+∞),递减区间:(-2,1)
10.a=0,b=-3,c=2
11.依题意有1+a+b+c=-2,
3+2a+b=0,解得a=c,
b=-2c-3,从而f′(x)=3x2+2cx-(2c+3)=(3x+2c+3)·(x-1).令f′(x)=0,得x=1或x=-2c+33
①若-2c+33<1,即c>-3,f(x)的单调区间为-∞,-2c+33,[1,+∞);单调减区间为-2c+33,1
②若-2c+33>1,即c<-3,f(x)的单调增区间为(-∞,1],-2c+33,+∞;单调减区间为1,-2c+33
1?3?3函数的(小)值与导数
1.B2.C3.A4.x>sinx5.06.[-4,-3]7.最小值为-2,值为1
8.a=-29.(1)a=2,b=-12,c=0(2)值是f(3)=18,最小值是f(2)=-82
10.值为ln2-14,最小值为0
11.(1)h(t)=-t3+t-1(2)m>1.提示:令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,则当t∈(0,2)时,函数g(t)<0恒成立,即函数g(t)的值小于0即可
1?4生活中的优化问题举例(一)
1.B2.C3.D4.32m,16m5.40km/h6.1760元7.115元
8.当q=84时,利润9.2
10.(1)y=kx-12+2000(x-9)(14≤x≤18)(2)当商品价格降低到每件18元时,收益
11.供水站建在A,D之间距甲厂20km处,可使铺设水管的费用最省
1?4生活中的优化问题举例(二)
1.D2.B3.D4.边长为S的正方形5.36.10,196007.2ab
8.4cm
9.当弯成圆的一段长为x=100ππ+4cm时,面积之和最小.
提示:设弯成圆的一段长为x,另一段长为100-x,正方形与圆的面积之和为S,则S=πx2π2+100-x42(0
10.h=S43,b=2S42711.33a
2020高二数学暑假作业答案大全相关 文章 :
★ 2020部编版高一年级下学期数学暑假作业答案大全
★ 2020高二数学题合集
★ 2020经典高二数学题
★ 2020高二数学教案精选
★ 2020高二数学题期末
★ 2020高二暑假计划精选文本800字大全
★ 2020优秀高二暑假计划范本1000字大全
★ 2020高二数学教案设计
★ 2020高中生暑假的学习计划
★ 2020高二数学知识点总结
2019年福建高考数学试卷试题及答案解析(答案WORD版)
我是文科的。文数总体不难。 特别是12道选择题都不怎么难,我们班很多同学都全对。填空题最后一题会难一些。大题的话,每道大题的最后一步会难。三角函数放到了倒二题,圆锥曲线放到了19题。如果你细心的话,中档题和简单题能做对,应该有120以上了。。反正明年福建考全国卷,你应该研究一下全国卷。2015高考,算是业界的良心,至少文数是这样。
2022福建福州5月质检/三检数学答案解析及试卷
福建高考数学试卷试题及答案解析1.关注基础,凸显平稳
命题充分关注数学基础知识、基本技能和基本思想方法的考查。文、理科试卷,分别取材于构成高中数学主体框架内容的函数与导数、立体几何、解析几何、概率与统计、三角函数和数列的试题,不仅考查分值占比高,而且有机融合了与之相关的知识、技能和思想方法,从而全面地检测了考生作为未来公民所必需的数学基础。
与此同时,命题立足中学教学的实际,在试卷的题型结构、赋分比例、难度要求以及试题难易梯度等方面,都严格地遵循了《考试说明》的相关规定,并科学地继承福建省已有高考数学命题的成功经验。
2.注重综合,适度创新
命题基于学科整体意义和考生后续学习需要,立足考试内容抽样的合理性和典型性,综合考查考生知识网络和方法体系的完备性,充分体现《考试说明》中的知识、能力和思想方法等要求。
命题追求稳中求新,适度考查将已有的知识与方法迁移到新情境中解决问题的能力。如理8(文16)以等差数列和等比数列的定义为载体综合考查推理论证能力、运算求解能力和创新意识;理10、文21(Ⅱ)(ⅱ)分别以导数的几何意义和正弦函数的最小正周期为载体综合考查推理论证能力、特殊与一般思想、有限与无限思想和数形结合思想;理15以纠错码和异或运算为载体综合考查了阅读理解、迁移运用的能力。
3.依托本质,突出能力
命题将考查综合运用数学的知识与方法解决问题的能力置于首要的位置,依托数学知识与方法的本质含义体现“知识立意”与“能力立意”,既全面又有所侧重地考查了《考试说明》要求的“五个能力”、“两个意识”和“七个思想”。如文12依托“三角函数线”侧重考查推理论证能力、抽象概括能力和数形结合思想;文18、理16分别依托“全网传播的融合指数”和“银行卡密码”侧重考查数据处理能力、应用意识和必然与或然思想;文20(Ⅲ)依托“两点之间线段最短”侧重考查了空间想象能力、推理论证能力和化归与转化思想;理10依托“导数的几何意义”侧重考查推理论证能力、特殊与一般思想和数形结合思想;理15依托“纠错码和异或运算”侧重考查推理论证能力和创新意识;文22、理20依托“导数的综合应用”侧重考查推理论证能力、运算求解能力、创新意识、数形结合思想和分类与整合思想。
4.强调应用,彰显选拔
命题强调数学的应用,既考查了数学知识与方法在学科内的应用。如文12、文15、文21、文22、理9、理14、理19、理20,也考查了数学知识在解决实际问题中的应用;如文13、文18、理4、理15、理16。
命题立足选拔的要求,淡化层次内的区分,强化层次间的区分,合理预设各种题型的难度梯度,力求各种题型内试题难度与题序同步增加,解答题每个小题也从易到难。如文20、21、22的第(Ⅰ)和(Ⅱ)问,理19、20的第(Ⅰ)问均较易入题,余下各问则着重考查考生的自然语言、图形语言和符号语言的转换和思考的能力。
此外,命题还关注解法多样性,藉此考查不同层次考生分析问题、解决问题的能力,彰显选拔功能。
急求2012福建高考文科数学题目及答案
2022福建福州5月质检/三检非常重要,本文介绍汇总整文2022福建福州5月质检/三检数学试卷,以及2022福建福州5月质检/三检数学答案。
2022福建福州5月质检/三检联考将于2022年5月6日开始,本场考试结束后,本文将尽快更新2022福建福州5月质检/三检数学答案,各位同学可以持续关注本文。
1、2022福建福州5月质检/三检数学答案
关于2022福建福州5月质检/三检数学试卷答案,本文将在考试结束后尽快更新。
2、2022福建福州5月质检/三检数学试卷
如果对于模拟考试或者高考有相关的疑问,也可以在本文前后,输入模考分数查看能上的大学,以及查看2022年福建高考其他相关信息。
2012年普通高等学校招生全国统一考试福建卷(数学文)word版
数学试题(文史类)
第I卷(选择题?共60分)
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数(2+i)2等于
A.3+4i B.5+4i C.3+2i D.5+2i
2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是
A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}
3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是
A.x=- B.x-1 C.x=5 D.x=0
4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世
A?球? B? 三棱锥? C? 正方体?D?圆柱?
5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于
A ? B C ?D ?
6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?
A?-3? B? -10? C? 0 D? -2?
7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于
A.? B?.?C.? D.1
8.函数f(x)=sin(x-?)的图像的一条对称轴是
A.x= B.x= C.x=- D.x=-?
9.设?,则f(g(π))的值为
A?1 ? B? 0 ?C? -1 ?D? π
10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为
A.-1? B.1? C. D.2
11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于
A.1006 B.2012 C.503 D.0
12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.
其中正确结论的序号是
A.①③ B.①④ C.②③ D.②④
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。
13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。
14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。
15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。
16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.
现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。
三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(Ⅰ)求an和bn;
(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。
18.(本题满分12分)
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;
(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
19.(本小题满分12分)
如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。
(1) 求三棱锥A-MCC1的体积;
(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。
20.?(本小题满分13分)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°
(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°
Ⅰ?试从上述五个式子中选择一个,求出这个常数?
Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。
21.(本小题满分12分)
如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。
(1) 求抛物线E的方程;
(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。
22.(本小题满分14分)
已知函数?且在?上的最大值为?,
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。
2012年普通高等学校招生全国统一考试福建卷(数学文)word版
数学试题(文史类)
第I卷(选择题?共60分)
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数(2+i)2等于
A.3+4i B.5+4i C.3+2i D.5+2i
2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是
A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}
3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是
A.x=- B.x-1 C.x=5 D.x=0
4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世
A?球? B? 三棱锥? C? 正方体?D?圆柱?
5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于
A ? B C ?D ?
6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?
A?-3? B? -10? C? 0 D? -2?
7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于
A.? B?.?C.? D.1
8.函数f(x)=sin(x-?)的图像的一条对称轴是
A.x= B.x= C.x=- D.x=-?
9.设?,则f(g(π))的值为
A?1 ? B? 0 ?C? -1 ?D? π
10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为
A.-1? B.1? C. D.2
11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于
A.1006 B.2012 C.503 D.0
12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.
其中正确结论的序号是
A.①③ B.①④ C.②③ D.②④
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。
13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。
14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。
15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。
16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.
现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。
三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(Ⅰ)求an和bn;
(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。
18.(本题满分12分)
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;
(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
19.(本小题满分12分)
如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。
(1) 求三棱锥A-MCC1的体积;
(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。
20.?(本小题满分13分)
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°
(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°
Ⅰ?试从上述五个式子中选择一个,求出这个常数?
Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。
21.(本小题满分12分)
如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。
(1) 求抛物线E的方程;
(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。
22.(本小题满分14分)
已知函数?且在?上的最大值为?,
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。