您现在的位置是: 首页 > 教育研究 教育研究
2014年高考数学_2014高考数学大题
tamoadmin 2024-06-12 人已围观
简介1.2014年全国统一高考数学试卷(文科)(大纲版)最后一题22题,关于抛物线的问题,求详细的思路和解题过程2.第二问怎么做。高考数学题。2014全国卷2。本题考查了三角函数,复合函数的求导数公式和法则,诱导公式,以及数学归纳法证明命题,转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题,分析问题,解决问题的能力,以及逻辑思维能力.答案看哈哈都没其他人
1.2014年全国统一高考数学试卷(文科)(大纲版)最后一题22题,关于抛物线的问题,求详细的思路和解题过程
2.第二问怎么做。高考数学题。2014全国卷2。
本题考查了三角函数,复合函数的求导数公式和法则,诱导公式,以及数学归纳法证明命题,转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题,分析问题,解决问题的能力,以及逻辑思维能力.答案看哈哈都没其他人给你答,还好我来了,采纳哦
已知函数f0(x)=sinx/x,(x>0),设fn(x)为fn-1(x)的导数,n属于N *,
(1)求2f1(π/2)+(π/2)f2(π/2)的值;
(2)证明:对任意 n属于N*,等式|nfn-1(π/4)+(π/4)fn(π/4)|=根号2/2(二分之根号2)都成立。
2014年全国统一高考数学试卷(文科)(大纲版)最后一题22题,关于抛物线的问题,求详细的思路和解题过程
这题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.
设BD与AC的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;第二问通过AP=1,AD根号3,三棱锥P-ABD体积V=根号3/4,求出AB,作AH⊥PB角PB与H。
解: (1)证明:设BD与AC的交点为O,连结EO,
∵ABCD是矩形,∴O为BD中点,这是详细答案你看下。有详细的解答过程及分析。四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD中点。(1)证明:PB∥平面AEC;(2)设AP=1,AD=根号3,三棱锥P-ABD体积V=根号3/4.求A到平面PBC距离。
你自己琢磨下答案,不明白可以继续问我哦,加油~有帮助的话希望能给你个采纳哦,祝你学习进步!
第二问怎么做。高考数学题。2014全国卷2。
本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,体现了分类讨论的数学思想。答案看其实这题也就是中档题吧,不算太难
已知抛物线C:y^2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=5/4|PQ|.
(Ⅰ)求C的方程;
(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.
3^n-1=3*3^(n-1)-1=2*3^(n-1)+[3^(n-1)-1]≥2*3^(n-1)+0=2*3^(n-1)
所以,
1/an≤[1/3^(n-1)]
(1/a1)+(1/a2)+.......+(1/an)≤1+(1/3)+(1/3^2)+.....+[1/3^(n-1)]=[1/(1-1/3)[1-(1/3)^n]<[1/(1-1/3)][1-0]=3/2
所以,
(1/a1)+(1/a2)+.......+(1/an)<3/2