您现在的位置是: 首页 > 教育研究 教育研究

高考数学知识点_职教高考数学知识点

tamoadmin 2024-06-12 人已围观

简介1.高考数学比较难的知识点有哪些?2.高中数学知识点总结3.高三数学有哪些知识点4.数学高考必考知识点总结有哪些?5.高考数学必背公式6.高考数学必考知识点归纳有哪些?7.数学高考必考知识点有哪些? 数学是一切科学的基础,一不小心就容易出错,在高考上出错可就不好了.接下来是我为大家整理的高考数学必考知识点2022,希望大家喜欢! 目录 高考数学必考知识点一 高考数学

1.高考数学比较难的知识点有哪些?

2.高中数学知识点总结

3.高三数学有哪些知识点

4.数学高考必考知识点总结有哪些?

5.高考数学必背公式

6.高考数学必考知识点归纳有哪些?

7.数学高考必考知识点有哪些?

高考数学知识点_职教高考数学知识点

数学是一切科学的基础,一不小心就容易出错,在高考上出错可就不好了.接下来是我为大家整理的高考数学必考知识点2022,希望大家喜欢!

目录

高考数学必考知识点一

高考数学必考知识点二

高考数学必考知识点三

高考数学必考知识点四

高考数学必考知识点一

一、集合、简易逻辑(14课时,8个)

1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)

1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)

1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)

1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

五、平面向量(12课时,8个)

1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)

1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。

七、直线和圆的方程(22课时,12个)

1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

八、圆锥曲线(18课时,7个)

1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。

九、直线、平面、简单何体(36课时,28个)

1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。

十、排列、组合、二项式定理(18课时,8个)

1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。

十一、概率(12课时,5个)

1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。

选修Ⅱ(24个)

十二、概率与统计(14课时,6个)

1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样 方法 ;4.总体分布的估计;5.正态分布;6.线性回归。

十三、极限(12课时,6个)

1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。

十四、导数(18课时,8个)

1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的值和最小值。

十五、复数(4课时,4个)

1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。

〈〈〈

高考数学必考知识点二

1、圆的定义:

平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有

(2)过圆外一点的切线:

①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:

通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

〈〈〈

高考数学必考知识点三

一、随机事件

主要掌握好(三四五)

(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。

二、概率定义

(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;

(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;

(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

三、概率性质与公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.

(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.

〈〈〈

高考数学必考知识点四

分层抽样

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

3.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

分层的比例问题

(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

〈〈〈

高考数学必考知识点2022相关 文章 :

★ 高三数学二轮复习策略2022

★ 高三上册数学教学总结2022最新

★ 2022年期末考试反思总结十篇

★ 高三数学期末知识点

★ 2022年安徽高考时间最新

★ 2022湖北高考时间安排

★ 2022高中数学教学工作计划精选10篇

★ 高三数学教学工作计划范本2022

★ 2022年天津高考具体时间

★ 湖南高考时间2022具体时间

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高考数学比较难的知识点有哪些?

高考数学必考知识点归纳:

第一,函数与导数

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

第七,解析几何

高考的难点,运算量大,一般含参数。高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

高中数学知识点总结

高考数学的难点有很多,以下是一些常见的难点:

1.函数:函数是高中数学的基石,也几乎是每个学校最先讲的内容。函数的概念、性质、图像和变换等都是需要掌握的重点。

2.三角函数:三角函数涉及的公式多,变化更多。诱导公式、和差公式、二倍角公式、降幂公式等,一系列的公式记住就有难度,用起来变化多,更加有难度。

3.导数:导数是高中数学中最重要的部分之一。导数的概念、性质和应用都是需要掌握的重点。

4.立体几何:立体几何是高中数学中比较难的部分之一。空间想象力和计算能力都需要比较好才能掌握。

5.概率论与数理统计:概率论与数理统计是高中数学中比较难的部分之一。概率模型的建立和应用都是需要掌握的重点。

高三数学有哪些知识点

高中数学内容包括集合与函数、三角函数、不等式、数列、复数、排列、组合、二项式定理、立体几何、平面解析几何等部分。具体总结如下:

1、《集合与函数》

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数。正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

2、《三角函数》

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值。

3、《不等式》

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

4、《数列》

等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。

5、《复数》

虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

扩展资料:

1、高中数学许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。

2、再如,函数概念有两种定义,一种是初中给出的定义,是从运动变化的观点出发,其中的对应关系是将自变量的每一个取值,与唯一确定的函数值对应起来:另一种是高中给出的定义,是从集合、对应的观点出发,其中的对应关系是将原象集合中的每一个元素与象集合中唯一确定的元素对应起来。

参考资料:

高中数学-百度百科

数学高考必考知识点总结有哪些?

 高三数学的基本知识点和公式有哪些?不知道的考生看过来,下面由我为你精心准备了“高三数学有哪些知识点”仅供参考,持续关注本站将可以持续获取更多的资讯!

高三数学有哪些知识点

 高三数学知识点

 1、忽视集合元素的三性致误

 集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

 2、判断函数奇偶性忽略定义域致误

 判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

 3、函数零点定理使用不当致误

 如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。

 4、函数的单调区间理解不准致误

 在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

 高中数学公式

 1、十倍角公式

 sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))

 cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))

 tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

 2、万能公式

 sinα=2tan(α/2)/[1+tan^2(α/2)]

 cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

 tanα=2tan(α/2)/[1-tan^2(α/2)]

 3、半角公式

 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

 cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

 tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

 cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

 4、和差化积

 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

 sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

 tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

 cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB

 5、某些数列前n项和

 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

 2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

 |a-b|≥|a|-|b| -|a|≤a≤|a|

 拓展阅读:高中数学题型解答方法

 三角函数题型解答

 这个题型有两种考法,大概10%~20%的概率考解三角形,80%~90%的概率考三角函数本身。

 (一)解三角形不管题目是什么,作为被考察者,你要明白关于解三角形,你只学了三个公式——正弦定理,余弦定理和面积公式。所以,解三角形的题目,求面积的话肯定用面积公式。至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试一下也未尝不可。

 (二)三角函数三角函数,套路一般是给出一个比较复杂的式子,问函数的定义域、值域、周期频率和单调性等问题。

 立体几何题型答题技巧

 相比于前面的三角函数,立体几何题型要稍微复杂一些,可能会卡住一些人。该题通常有2-3问,第一问求某条线的大小或证明某个线/面与另外一个线/面平行或垂直,最后一问求二面角。

 这类题解题方法主要有两种,传统法和空间向量法,其中各有利弊。

 (一)向量法:使用向量法的好处在于没有任何思维含量,肯定能解出最终答案。缺点是计算量大,且容易出错。

 应用空间向量法,首先应该建立空间直角坐标系。建系结束后,根据已知条件可用向量确定每条直线。其形式为AB=(a,b,c)然后进行后续证明与求解。

 (二)传统法:学习立体几何章节,虽然学了很多性质定理和判定定理,但针对高考立体几何大题而言,解题方法基本是唯一的,除了上图6和8有两种解题方法以外,其他都是有唯一的方法。所以,熟练掌握解题模型,拿到题目直接按照标准解法去求解便可。

 另外,还有一类题,是求点到平面距离的,这类题百分之百用等体积法求解。

 数列题型怎么答

 从这里开始,题型难度开始明显增加,但只要掌握了套路和方法,同样并不困难。数列的考察主要是求解通项公式和前n项和。

 (一)通项公式观察题目中给出的条件形式,不同形式对应不同的解题方法。

 通项公式的求法我给出了8种,着重掌握上图中的1、4、5、6、7、8,其实4-8可以算作一种。除了以上八种方法,还有一种叫定义法,就是题中给出首项和公差或者公比,按照等差等比数列的定义进行求解。

 (二)求前n项和求前n项和主要有四种方法——倒序相加法,错位相减法,分组求和法,裂项相消法。同样,每种方法都有对应的使用范围。

 当然,还有课本上关于等差数列和等比数列求前n项和的基本方法,请大家牢记掌握。

高考数学必背公式

数学高考必考知识点总结有:

1、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项。

2、复合函数奇偶性:内偶则偶,内奇同外。

3、周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

4、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

5、当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0。

高考数学必考知识点归纳有哪些?

高考数学必背公式如下:

高考数学必背公式:

圆的公式:包括圆体积、面积、周长以及圆的标准方程、一般方程等。椭圆公式:椭圆周长公式、椭圆周长定理、椭圆面积公式等。两角和公式:包括正弦、余弦、正切的两角和公式以及半角公式等。

倍角公式:包括正弦、余弦、正切的二倍角公式等。三角函数的和差化积以及积化和差公式。等差数列、等比数列的通项公式以及求和公式等。抛物线等公式。

高考数学的重点:

1、函数与导数:函数是高中数学的基础,导数是函数研究的重要工具。学生需要理解函数的性质和图像,掌握求导的方法和应用,理解导数在研究函数单调性和极值中的应用。

2、三角函数:三角函数是高中数学的重要内容之一,包括正弦、余弦、正切等函数的图像和性质,以及三角恒等变换和三角方程等。这部分内容需要学生掌握三角函数的周期性、对称性和最值等性质,同时要能够利用三角恒等变换进行化简和求值。

高考数学学习方法:

1、制定学习计划:

在开始学习之前,制定一个明确、可执行的学习计划。这个计划应该包括每天的学习任务、每周的学习目标以及每个月的学习计划。通过这种方式,你可以有条不紊地安排自己的学习时间,避免浪费时间和精力。

2、注重基础知识:

数学是一门需要扎实基础的学科。在学习过程中,要注重对基础知识的学习和掌握,如代数、几何、概率等。只有掌握了这些基础知识,才能更好地理解和应用更复杂的概念和技巧。

3、多做练习题:

数学是一门需要通过大量练习来提高技能的学科。通过多做练习题,你可以更好地掌握知识点,了解各种题型的特点和解法,提高解题速度和准确率。

4、建立错题本:

在学习的过程中,难免会遇到做错的题目。建立错题本是一个非常好的学习方法。将做错的题目记录下来,分析错误原因,并对其进行纠正。这样可以避免同样的错误再次出现,提高学习效率。

数学高考必考知识点有哪些?

高考数学必考知识点归纳:

第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何是高考的难点,运算量大,一般含参数。

注意:

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。

数学高考必考知识点有:

1、常用名称和术语:坡角、仰角、俯角、方位角、方向角。

2、轨迹方程的相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

3、等比数列爆强公式:S(n+m)=S(m)+q2mS(n)。

4、三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。

5、复合函数奇偶性:内偶则偶,内奇同外。

文章标签: # 函数 # 公式 # 数学