您现在的位置是: 首页 > 教育研究 教育研究
2015高考圆锥曲线_2019高考圆锥曲线
tamoadmin 2024-06-09 人已围观
简介1.山东数学高考,圆锥曲线问题 评分标准2.高三数学圆锥曲线3.关于2015年高考三门试卷难度的最新信息4.2015年福建高考数学难不难,难度系数解读点评解析5.高考圆锥曲线很多朋友或同学们并不懂积分。所以,在下用合理的逻辑,做简单的解释,具备初高中数学都可理解。如下:首先给个圆柱,高H,底半径R(H与R非无穷大)。然后,以它的底和高为基础在内部做个圆柱。怎么比较二者体积呢?关键时刻来了这里我们先
1.山东数学高考,圆锥曲线问题 评分标准
2.高三数学圆锥曲线
3.关于2015年高考三门试卷难度的最新信息
4.2015年福建高考数学难不难,难度系数解读点评解析
5.高考圆锥曲线
很多朋友或同学们并不懂积分。所以,在下用合理的逻辑,做简单的解释,具备初高中数学都可理解。如下:
首先给个圆柱,高H,底半径R(H与R非无穷大)。
然后,以它的底和高为基础在内部做个圆柱。
怎么比较二者体积呢?关键时刻来了
这里我们先给定几个定义,
1, 假定上帝存在;
2, 用上帝之刀平行于圆柱底均匀切割N次,使N无穷大,得到(N+1)个圆柱和圆锥的切面, 切面的厚度为H/(N+1);
3, 无穷切, 使N无穷大到某程度,得到 Δr= R/N ,使得Δr为圆锥的元点半径(不能更小,类 似电子电荷(元电荷)电量)。这是逻辑上的关键,请深刻理解。
理解了以上定义,我们就可以知道相关计算数据了。对于圆锥的所有切面而言,
各切面半径从顶到底依次为0,Δr,2Δr,…mΔr,…NΔr=R( 因为Δr已定义不可再分),
圆锥各切面面积从顶到底依次为0,πΔr^2,π(2Δr)^2……π(NΔr)^2,
各单切面体积依次是 切面面积*(H/(N+1))
故圆锥体积等于所有切面的体积加和
V锥=(πΔr^2)*(0+1+2^2+3^2+...+N^2) * (H/(N+1))
我们再来看看圆柱的体积。它是(N+1)个圆柱切面体积的加和,很简单
V柱=(N+1) * (πR^2)*(H/(N+1))=(N+1) *(π(NΔr)^2)*(H/(N+1))
故 V锥/ V柱=(0+1+2^2+3^2+...+N^2) / ((N^2)*(N+1))
根据数列知识,
V锥/ V柱=N*(N+1)*(2N+1)/6 / ((N^2)*(N+1))=1/3+1/(6 N)
故,N为无穷大时,V锥/ V柱=1/3
山东数学高考,圆锥曲线问题 评分标准
选择题一般第一个,第二个是三角,复数,集合,最后两个选择题最有可能是圆锥曲线和导数,中间几个肯定有一个程序框图,还有数列,线性规划的选择题,如果你做模拟题做的多会发现,第一个答题三角或数列的可能最大,第二题大多是概率与统计,第三题最有可能是立体几何,第四个可能最大的是圆锥曲线,第五个可能最大是导数,三选一建议选坐标系与参数方程,比较容易做
高三数学圆锥曲线
圆锥曲线包括圆,椭圆,双曲线,抛物线。其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当e>1时为双曲线,当e=1时为抛物线,当e<1时为椭圆。
一般公式写对了会给一两分。
但在圆锥曲线里,韦达定理是需要的,写不写,确实无所谓的。所以,你如果在题目中写出的是韦达定理,一般老师是不会给分的。
要想得到圆锥曲线拿到题目的公式分,你最好是记下椭圆,抛物线,双曲线的方程式。还有,多去看看题目的标准解题过程,就算不会,每一步该写什么也有个大概的概念。把自己知道的公式和文字一起写上。切忌全面空白!
关于2015年高考三门试卷难度的最新信息
解:(1)由题意知c=1,a=√2,故b=√(a?-c?)=1
椭圆方程为
x?/2+y?=1
(2)令x=1,解得y=±√2/2,故有B(1,√2/2)。可设P(1,m),0<m<√2/2
于是直线AC的方程为
y=k(x-1)+m,0<m<√2/2
代入椭圆方程,化简得
x?+2[k?(x?-2x+1)+2km(x-1)+m?]-2=0
(2k?+1)x?-(4k?-2km)x+(2k?-2km+m?-2)=0 ①
由题意知关于x的一元二次方程①的两个根x1和x2应满足:
x1+x2=(4k?-2km)/(2k?+1)=2
得km=-1
故k=-1/m
且需判别式Δ=[-(4k?-2km)]?-4(2k?+1)(2k?-2km+m?-2)>0
将km=-1代入得
(2k?+1)?-(2k?+1)(2k?+2+m?-2)>0
(2k?+1)[(2k?+1)-(2k?+m?)]>0
(2k?+1)(1-m?)>0
显然是成立的。
故有k=-1/m<-√2
(3)ABCF2为平行四边形,由于AP=PC,故还需BP=PF2,则有m=√2/4,及k=-2√2
由于(韦达定理):
x1+x2=2
x1x2=(2k?-2km+m?-2)/(2k?+1)=129/136
则|AC|=√(1+k?)*|x2-x1|=√{(1+k?)[(x1+x2)?-4x1x2]}
=√[(1+8)(2?-4*129/136)]=3√(7/34)
直线AC的倾角(与x轴正向的夹角)α满足tanα=-2√2
故sin<APB=sin(α-90°)=-cosα=-{-1/√[(1+(-2√2)?]}=1/3
则平行四边形的面积
S=4×1/2×3√(7/34)/2×√2/4×1/3=√119/68
2015年福建高考数学难不难,难度系数解读点评解析
6月7日下午,高考数学科目考试结束,西北师大附中教师李晓霞认为,数学文科试卷难度大体上与去年持平,稳中求变,有利于人才选拔。兰大附中教师李虎认为,数学理科试卷较去年相比,基本上保持稳定,在个别地方有所创新,更加贴近教材。
数学(文科)
结构和考查内容相对稳定,重点考查主干知识
西北师大附中李晓霞
2015年高考数学新课标全国试卷2(文科),结构和考查内容相对稳定,重点考查主干知识,以《课程标准》、《考试大纲》为依据,试卷贴近中学教学实际,紧扣教材,注重基础,注重对数学思想与方法的考查,如数形结合思想、函数与方程思想、转化思想及分类讨论思想等。体现了数学的基础性、应用性和工具性的学科特色。试卷从多视角、多维度、多层次考查考生数学思维品质、数学素养和学习潜能。
考查内容涵盖了函数、数列、不等式、立体几何、解析几何、概率统计等高中数学模块,对于支撑学科知识体系的主干知识点,如函数的性质、导数的应用、空间几何体、圆锥曲线、概率、统计的考查保持了较高的比例,对于其他非主干知识点也注意适度考查,重点考查算法、三视图等知识点。纵观全卷,今年的数学试题,选择题简洁平稳,区分度好,填空题难度适中,解答题层次分明。整套试题衔接有序,稳中求变,有利于选拔。
数学(理科)
突出数学课程改革,更加体现新课程特点
兰大附中李虎
今年的高考试题是甘肃省新课标下的第三年高考,较前两年高考试题相比,今年整套试卷更加突出了数学课程的改革,更加体现了新课程的特点。试题严格按照注重通性通法,淡化特殊技巧的命题原则,紧扣教学大纲,对推进数学新课程改革起着积极作用。
1.试题总体看,高频考点依然在试卷中占有较高比例。比如集合的关系与运算,复数的概念与运算,等差等比数列的通项公式,性质,求和公式等,分段函数,函数的图像,解斜三角形,概率与统计,三视图,程序与框图,导数的几何意义与应用,线性规划问题,圆锥曲线的定义,球体的表面积与体积,平面向量,直线与圆的方程,二项式定理,三角函数求最值,函数的性质,已知数列递推公式求通项公式,不等式恒成立等这些核心考点,在今年的考题中都有所考查。这部分知识的题目应该都是反复练习过的,对于绝大多数学生都是可以拿下的。
2.试题与去年相比,基本上保持稳定,在个别地方有所创新,更加贴近教材。第17题即第一个解答题是解斜三角形的问题,今年考三角,这是和新课标数学命题规律完全吻合的,应该说是在预料当中。相比去年的数列题学生应该更容易上手一些,但学生如果不知道三角形内角平分线性质定理解决第一问就要麻烦一些,这个性质这几年经常考,今年再次出现也在情理之中。对于18题概率统计题,保持去年的命题风格,以统计为背景考查概率,以统计为背景的概率题是近几年新课程命题概率题的特点,这也是要落实高考数学七种能力中的对数据处理能力的必选题型。立体几何题是以长方体为载体定性和定量考查线面关系,在设问上第一问较以往有所变化,但考查的本质是一样的,第二问还是经常考的线面角。
3.试题很好地把握了区分度。由去年一题压轴调整为由两题压轴。去年的解析几何题目较为常规,数学基础扎实的学生都没有问题,但今年的第一问就增大了运算量。最后的压轴题导数和去年比就简单多了,今年这个题是一个很常规的题目,应该是反复训练过的题型,第一问单调性问题,第二问最值问题,数学思维好的学生是能拿满分的。
高考圆锥曲线
我是文科的。文数总体不难。 特别是12道选择题都不怎么难,我们班很多同学都全对。填空题最后一题会难一些。大题的话,每道大题的最后一步会难。三角函数放到了倒二题,圆锥曲线放到了19题。如果你细心的话,中档题和简单题能做对,应该有120以上了。。反正明年福建考全国卷,你应该研究一下全国卷。2015高考,算是业界的良心,至少文数是这样。
圆锥曲线定义的应用
规律与方法:
1、圆锥曲线的定义是相应标准方程和几何性质的“源”,对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.
2、研究有关点间的距离的最值问题时,常用定义把曲线上的点到焦点的距离转化为到另一焦点的距离或利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数形结合的思想去解决有关的最值问题.
例1 若点M(2,1),点C是椭圆x216+y2
7
=1的右焦点,点A是椭圆的动点,则|AM|+|AC|的最
小值是________
跟踪训练1 已知椭圆x29+y2
5=1,F1、F2分别是椭圆的左、右焦点,点A(1,1)为椭圆内一点,
点P为椭圆上一点,求|PA|+|PF1|的最大值.
2
题型二 有关圆锥曲线性质的问题
规律与方法
有关圆锥曲线的焦点、离心率、渐近线等问题是考试中常见的问题,只要掌握基本公式和概念,并且充分理解题意,大都可以顺利求解.
例2 已知椭圆x23m2+y25n2=1和双曲线x22m2-y2
3n2=1有公共的焦点,那么双曲线的渐近线
方程是
跟踪训练2 已知双曲线x2a2-y2b2=1的离心率为2,焦点与椭圆x225+y2
9=1的焦点相同,那
么双曲线的焦点坐标为________;渐近线方程为________.
题型三 直线与圆锥曲线位置关系问题
规律与方法:
1.直线和圆锥曲线的位置关系可分为三类:无公共点、仅有一个公共点及有两个相异的公共点.其中,直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或直线与双曲线的渐近线平行;对于抛物线,表示与其相切或直线与其对称轴平行.
2.有关直线与圆锥曲线的位置关系的题目可能会涉及直线与圆锥曲线的关系中的弦长、焦点弦及弦中点问题、取值范围、最值等问题.
3.这类问题综合性强,分析这类问题,往往利用数形结合的思想和“设而不求”的方法、对称的方法及根与系数的关系等.
例3 已知椭圆C:x2a2+y2b2=1 (a>b>0)的离心率为6
3,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为3
2
,求△AOB面积的最大值.
3
跟踪训练3 已知向量a=(x,3y),b=(1,0)且(a+3b)⊥(a-3b). (1)求点Q(x,y)的轨迹C的方程;
(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,-1),当|AM|=|AN|时,求实数m的取值范围
题型四 与圆锥曲线有关的轨迹问题
规律与方法:
轨迹是动点按一定规律运动而形成的,轨迹的条件可以用动点坐标表示出来.求轨迹方程的基本方法是
(1)直接法求轨迹方程:建立适当的直角坐标系,根据条件列出方程; (2)待定系数法求轨迹方程:根据曲线的标准方程; (3)定义法求轨迹方程:动点的轨迹满足圆锥曲线的定义;
(4)代入法求轨迹方程:动点M(x,y)取决于已知曲线C上的点(x0,y0)的坐标变化,根据两者关系,得到x,y,x0,y0的关系式,用x,y表示x0,y0,代入曲线C的方程. 例4 如图,已知线段AB=4,动圆O1与线段AB切于点C,且AC-BC=22,过点A、B分别作圆O1切线,两切线交于点P,且P、O1均在AB的同侧,求动点P的轨迹方程.