您现在的位置是: 首页 > 教育改革 教育改革
高考数列公式总结,高考数列公式
tamoadmin 2024-07-06 人已围观
简介1.高中数列2.高中数学数列方法和技巧3.一道高中数列问题,急求讲解,谢!!!4.数列求和S的方法5.数列求和6.如何求该数列的通项公式(关于n的函数)1.集合元素具有①确定性②互异性③无序性 2.集合表示方法①列举法 ②描述法 ③韦恩图 ④数轴法 3.集合的运算 ⑴ A∩(B∪C)=(A∩B)∪(A∩C) ⑵ Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB 4.集合的性质 ⑴n元
1.高中数列
2.高中数学数列方法和技巧
3.一道高中数列问题,急求讲解,谢!!!
4.数列求和S的方法
5.数列求和
6.如何求该数列的通项公式(关于n的函数)
1.集合元素具有①确定性②互异性③无序性
2.集合表示方法①列举法 ②描述法
③韦恩图 ④数轴法
3.集合的运算
⑴ A∩(B∪C)=(A∩B)∪(A∩C)
⑵ Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
4.集合的性质
⑴n元集合的子集数:2n
真子集数:2n-1;非空真子集数:2n-2
高中数学概念总结
一、 函数
1、 若集合A中有n 个元素,则集合A的所有不同的子集个数为 ,所有非空真子集的个数是 。
二次函数 的图象的对称轴方程是 ,顶点坐标是 。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即 , 和 (顶点式)。
2、 幂函数 ,当n为正奇数,m为正偶数,m<n时,其大致图象是
3、 函数 的大致图象是
由图象知,函数的值域是 ,单调递增区间是 ,单调递减区间是 。
二、 三角函数
1、 以角 的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点P到原点的距离记为 ,则sin = ,cos = ,tg = ,ctg = ,sec = ,csc = 。
2、同角三角函数的关系中,平方关系是: , , ;
倒数关系是: , , ;
相除关系是: , 。
3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: , = , 。
4、 函数 的最大值是 ,最小值是 ,周期是 ,频率是 ,相位是 ,初相是 ;其图象的对称轴是直线 ,凡是该图象与直线 的交点都是该图象的对称中心。
5、 三角函数的单调区间:
的递增区间是 ,递减区间是 ; 的递增区间是 ,递减区间是 , 的递增区间是 , 的递减区间是 。
6、
7、二倍角公式是:sin2 =
cos2 = = =
tg2 = 。
8、三倍角公式是:sin3 = cos3 =
9、半角公式是:sin = cos =
tg = = = 。
10、升幂公式是: 。
11、降幂公式是: 。
12、万能公式:sin = cos = tg =
13、sin( )sin( )= ,
cos( )cos( )= = 。
14、 = ;
= ;
= 。
15、 = 。
16、sin180= 。
17、特殊角的三角函数值:
0
sin 0 1 0
cos 1 0 0
tg 0 1 不存在 0 不存在
ctg 不存在 1 0 不存在 0
18、正弦定理是(其中R表示三角形的外接圆半径):
19、由余弦定理第一形式, =
由余弦定理第二形式,cosB=
20、△ABC的面积用S表示,外接圆半径用R表示,内切圆半径用r表示,半周长用p表示则:
① ;② ;
③ ;④ ;
⑤ ;⑥
21、三角学中的射影定理:在△ABC 中, ,…
22、在△ABC 中, ,…
23、在△ABC 中:
24、积化和差公式:
① ,
② ,
③ ,
④ 。
25、和差化积公式:
① ,
② ,
③ ,
④ 。
三、 反三角函数
1、 的定义域是[-1,1],值域是 ,奇函数,增函数;
的定义域是[-1,1],值域是 ,非奇非偶,减函数;
的定义域是R,值域是 ,奇函数,增函数;
的定义域是R,值域是 ,非奇非偶,减函数。
2、当 ;
对任意的 ,有:
当 。
3、最简三角方程的解集:
四、 不等式
1、若n为正奇数,由 可推出 吗? ( 能 )
若n为正偶数呢? ( 均为非负数时才能)
2、同向不等式能相减,相除吗 (不能)
能相加吗? ( 能 )
能相乘吗? (能,但有条件)
3、两个正数的均值不等式是:
三个正数的均值不等式是:
n个正数的均值不等式是:
4、两个正数 的调和平均数、几何平均数、算术平均数、均方根之间的关系是
6、 双向不等式是:
左边在 时取得等号,右边在 时取得等号。
五、 数列
1、等差数列的通项公式是 ,前n项和公式是: = 。
2、等比数列的通项公式是 ,
前n项和公式是:
3、当等比数列 的公比q满足 <1时, =S= 。一般地,如果无穷数列 的前n项和的极限 存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S= 。
4、若m、n、p、q∈N,且 ,那么:当数列 是等差数列时,有 ;当数列 是等比数列时,有 。
5、 等差数列 中,若Sn=10,S2n=30,则S3n=60;
6、等比数列 中,若Sn=10,S2n=30,则S3n=70;
六、 复数
1、 怎样计算?(先求n被4除所得的余数, )
2、 是1的两个虚立方根,并且:
3、 复数集内的三角形不等式是: ,其中左边在复数z1、z2对应的向量共线且反向(同向)时取等号,右边在复数z1、z2对应的向量共线且同向(反向)时取等号。
4、 棣莫佛定理是:
5、 若非零复数 ,则z的n次方根有n个,即:
它们在复平面内对应的点在分布上有什么特殊关系?
都位于圆心在原点,半径为 的圆上,并且把这个圆n等分。
6、 若 ,复数z1、z2对应的点分别是A、B,则△AOB(O为坐标原点)的面积是 。
7、 = 。
8、 复平面内复数z对应的点的几个基本轨迹:
① 轨迹为一条射线。
② 轨迹为一条射线。
③ 轨迹是一个圆。
④ 轨迹是一条直线。
⑤ 轨迹有三种可能情形:a)当 时,轨迹为椭圆;b)当 时,轨迹为一条线段;c)当 时,轨迹不存在。
⑥ 轨迹有三种可能情形:a)当 时,轨迹为双曲线;b) 当 时,轨迹为两条射线;c) 当 时,轨迹不存在。
七、 排列组合、二项式定理
1、 加法原理、乘法原理各适用于什么情形?有什么特点?
加法分类,类类独立;乘法分步,步步相关。
2、排列数公式是: = = ;
排列数与组合数的关系是:
组合数公式是: = = ;
组合数性质: = + =
= =
3、 二项式定理: 二项展开式的通项公式:
八、 解析几何
1、 沙尔公式:
2、 数轴上两点间距离公式:
3、 直角坐标平面内的两点间距离公式:
4、 若点P分有向线段 成定比λ,则λ=
5、 若点 ,点P分有向线段 成定比λ,则:λ= = ;
=
=
若 ,则△ABC的重心G的坐标是 。
6、求直线斜率的定义式为k= ,两点式为k= 。
7、直线方程的几种形式:
点斜式: , 斜截式:
两点式: , 截距式:
一般式:
经过两条直线 的交点的直线系方程是:
8、 直线 ,则从直线 到直线 的角θ满足:
直线 与 的夹角θ满足:
直线 ,则从直线 到直线 的角θ满足:
直线 与 的夹角θ满足:
9、 点 到直线 的距离:
10、两条平行直线 距离是
11、圆的标准方程是:
圆的一般方程是:
其中,半径是 ,圆心坐标是
思考:方程 在 和 时各表示怎样的图形?
12、若 ,则以线段AB为直径的圆的方程是
经过两个圆
,
的交点的圆系方程是:
经过直线 与圆 的交点的圆系方程是:
13、圆 为切点的切线方程是
一般地,曲线 为切点的切线方程是: 。例如,抛物线 的以点 为切点的切线方程是: ,即: 。
注意:这个结论只能用来做选择题或者填空题,若是做解答题,只能按照求切线方程的常规过程去做。
14、研究圆与直线的位置关系最常用的方法有两种,即:
①判别式法:Δ>0,=0,<0,等价于直线与圆相交、相切、相离;
②考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交。
15、抛物线标准方程的四种形式是:
16、抛物线 的焦点坐标是: ,准线方程是: 。
若点 是抛物线 上一点,则该点到抛物线的焦点的距离(称为焦半径)是: ,过该抛物线的焦点且垂直于抛物线对称轴的弦(称为通径)的长是: 。
17、椭圆标准方程的两种形式是: 和
。
18、椭圆 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 。其中 。
19、若点 是椭圆 上一点, 是其左、右焦点,则点P的焦半径的长是 和 。
20、双曲线标准方程的两种形式是: 和
。
21、双曲线 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 ,渐近线方程是 。其中 。
22、与双曲线 共渐近线的双曲线系方程是 。与双曲线 共焦点的双曲线系方程是 。
23、若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 ;
若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 。
24、圆锥曲线的焦参数p的几何意义是焦点到准线的距离,对于椭圆和双曲线都有: 。
25、平移坐标轴,使新坐标系的原点 在原坐标系下的坐标是(h,k),若点P在原坐标系下的坐标是 在新坐标系下的坐标是 ,则 = , = 。
九、 极坐标、参数方程
1、 经过点 的直线参数方程的一般形式是: 。
2、 若直线 经过点 ,则直线参数方程的标准形式是: 。其中点P对应的参数t的几何意义是:有向线段 的数量。
若点P1、P2、P是直线 上的点,它们在上述参数方程中对应的参数分别是 则: ;当点P分有向线段 时, ;当点P是线段P1P2的中点时, 。
3、圆心在点 ,半径为 的圆的参数方程是: 。
3、 若以直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系,点P的极坐标为 直角坐标为 ,则 , , 。
4、 经过极点,倾斜角为 的直线的极坐标方程是: ,
经过点 ,且垂直于极轴的直线的极坐标方程是: ,
经过点 且平行于极轴的直线的极坐标方程是: ,
经过点 且倾斜角为 的直线的极坐标方程是: 。
5、 圆心在极点,半径为r的圆的极坐标方程是 ;
圆心在点 的圆的极坐标方程是 ;
圆心在点 的圆的极坐标方程是 ;
圆心在点 ,半径为 的圆的极坐标方程是 。
6、 若点M 、N ,则 。
十、 立体几何
1、求二面角的射影公式是 ,其中各个符号的含义是: 是二面角的一个面内图形F的面积, 是图形F在二面角的另一个面内的射影, 是二面角的大小。
2、若直线 在平面 内的射影是直线 ,直线m是平面 内经过 的斜足的一条直线, 与 所成的角为 , 与m所成的角为 , 与m所成的角为θ,则这三个角之间的关系是 。
3、体积公式:
柱体: ,圆柱体: 。
斜棱柱体积: (其中, 是直截面面积, 是侧棱长);
锥体: ,圆锥体: 。
台体: , 圆台体:
球体: 。
4、 侧面积:
直棱柱侧面积: ,斜棱柱侧面积: ;
正棱锥侧面积: ,正棱台侧面积: ;
圆柱侧面积: ,圆锥侧面积: ,
圆台侧面积: ,球的表面积: 。
5、几个基本公式:
弧长公式: ( 是圆心角的弧度数, >0);
扇形面积公式: ;
圆锥侧面展开图(扇形)的圆心角公式: ;
圆台侧面展开图(扇环)的圆心角公式: 。
经过圆锥顶点的最大截面的面积为(圆锥的母线长为 ,轴截面顶角是θ):
十一、比例的几个性质
1、比例基本性质:
2、反比定理:
3、更比定理:
5、 合比定理;
6、 分比定理:
7、 合分比定理:
8、 分合比定理:
9、 等比定理:若 , ,则 。
十二、复合二次根式的化简
当 是一个完全平方数时,对形如 的根式使用上述公式化简比较方便。
⑵并集元素个数:
n(A∪B)=nA+nB-n(A∩B)
5.N 自然数集或非负整数集
Z 整数集 Q有理数集 R实数集
6.简易逻辑中符合命题的真值表
p 非p
真 假
假 真
二.函数
1.二次函数的极点坐标:
函数 的顶点坐标为
2.函数 的单调性:
在 处取极值
3.函数的奇偶性:
在定义域内,若 ,则为偶函数;若 则为奇函数。
高中数列
概念
按一定次序排列的一列数称为数列(sequence of number)。数列中的每一个数都叫做这个数列的项。排在第一位的数列称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项。所以,数列的一般形式可以写成
a1,a2,a3,…,an,…
简记为{an},项数有限的数列为“有限数列”(finite sequence),项数无限的数列为“无限数列”(infinite sequence)。
从第2项起,每一项都大于它的前一项的数列叫做递增数列;
从第2项起,每一项都小于它的前一项的数列叫做递减数列;
各项相等的数列叫做常数列;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列;
各项呈周期性变化的数列叫做周期数列(如三角函数);
各项相等的数列叫做常数列。
通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。
数列中数的总数为数列的项数。特别地,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。
如果可以用一个公式来表示,则它的通项公式是a(n)=f(n).
表示方法
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如an=(-1)^(n+1)+1
如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。如an=2a(n-1)+1 (n>1)
等差数列
定义
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),这个常数叫做等差数列的公差(common difference),公差通常用字母d表示。
缩写
等差数列可以缩写为A.P.(Arithmetic Progression)。
等差中项
由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmetic mean)。
通项公式
an=a1+(n-1)d
前n项和
Sn=n(a1+an)/2=n*a1+n(n-1)d/2
性质
且任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k-1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
应用
日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别
时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。
若为等差数列,且有an=m,am=n.则a(m+n)=0。
等比数列
定义
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列(geometric sequence)。这个常数叫做等比数列的公比(common ratio),公比通常用字母q表示。
缩写
等比数列可以缩写为G.P.(Geometric Progression)。
等比中项
如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
通项公式
an=a1q^(n-1)
前n项和
当q≠1时,等比数列的前n项和的公式为
Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q) (q≠1)
性质
任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar*2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
性质:
①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
应用
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息赫本金价在一起算作本金,
在计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金*(1+利率)^存期
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。
(1)等比数列的通项公式是:An=A1*q^(n-1)
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2)求和公式:Sn=nA1(q=1)
Sn=A1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)
(前提:q不等于 1)
任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
一般数列的通项求法
一般有:
an=Sn-Sn-1
逐商全乘法(对于后一项与前一项商中含有未知数的数列)。
化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。
读者注
在等差数列中,总有Sn S2n-n S3n-2n
2S2n-n=(S3n-S2n)Sn
即三者是等比数列,同样在等比数列中。三者成等差数列
特殊数列的通项的写法
1,2,3,4,5,6,7,8....... ---------an=n
1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n
2,4,6,8,10,12,14.......-------an=2n
1,3,5,7,9,11,13,15.....-------an=2n-1
-1,1,-1,1,-1,1,-1,1......--------an=(-1)^n
1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)
1,0,1,0,1,0,1,01,0,1,0,1....------an=[(-1)^(n+1)+1]/2
1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)π/2=sinnπ/2
9,99,999,9999,99999,......... ------an=(10^n)-1
1,11,111,1111,11111.......--------an=[(10^n)-1]/9
1,4,9,16,25,36,49,.......------an=n^2
1,2,4,8,16,32......--------an=2^(n-1)
数列前N项和公式的求法
(一)1.等差数列:
通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数
an=ak+(n-k)d ak为第k项数
若a,A,b构成等差数列 则 A=(a+b)/2
2.等差数列前n项和:
设等差数列的前n项和为Sn
即 Sn=a1+a2+...+an;
那么 Sn=na1+n(n-1)d/2
=dn^2(即n的2次方) /2+(a1-d/2)n
还有以下的求和方法: 1,不完全归纳法 2 累加法 3 倒序相加法
(二)1.等比数列:
通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项
an=a1*q^(n-1,am=a1*q^(m-1))
则an/am=q^(n-m)
(1)an=am*q^(n-m)
(2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)
(3)若m+n=p+q 则 am×an=ap×aq
2.等比数列前n项和
设 a1,a2,a3...an构成等比数列
前n项和Sn=a1+a2+a3...an
Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推倒的,这时可能要直接从基本公式推倒过去,所以希望这个公式也要理解)
Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);
注: q不等于1;
Sn=na1 注:q=1
求和一般有以下4个方法: 1,不完全归纳法 2 累乘法 3 错位求和法
高中数学数列方法和技巧
Sn+1 - Sn 算出来是an+1, Sn - Sn-1算出来是an,当然不一样。答案是an=-4+8n,没错。n属于N* 当然也没错,是因为an如果是Sn - Sn-1算出来的,n不能是0,否则Sn-1是没意义的,n>=1,再把n代成0,得a0,这样才完整。是至于S1=a1,如果数列从a1开始的话是对的。但时间长了记不清了,一般是S0=a0吧。学弟高考加油啊
一道高中数列问题,急求讲解,谢!!!
数列是高中数学的重要内容,又是学习高等数学的基础。高考对数列的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。下面是我为大家整理的关于高中数学数列 方法 和技巧,希望对您有所帮助。欢迎大家阅读参考学习!
1高中数学数列方法和技巧
一.公式法
如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.
二.倒序相加法
如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.
三.错位相减法
如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.
四.裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.
五.分组求和法
若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.
2高中数学数列问题的答题技巧
高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。
题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。
题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,我认为应该积累以下的一些方法。
对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法
对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。
总之,每次碰到一道陌生的数列题,要进行 总结 ,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。
3高考数学解题方法
解题过程要规范
高考数学计算题要保证既对且全,全而规范。应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。
解决高考数学计算题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,高考数学计算题解题过程和结果都不能离开实际背景。
先熟后生
高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。这样,在拿下数学熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
4高中生学好数学的诀窍
首先、准备好 笔记本 和草稿本,笔记本不是让你记公式记概念,那些东西书上都有,没必要再誊一遍到笔记本上,笔记本上主要记老师给的例题。毕竟老师是很有 经验 的,他们给的例题一定是很有代表性的,必要的时候可以背一背例题的解题方法,理解思路。
草稿本就是有些不是很重要的题,老师让举一反三这类的东西,就没必要写在笔记上,但是一定要跟着算,在纸上写两笔算一下绝对比你光看光想的效果要好得多。
其次、上课一定集中注意力,要和老师有一定的互动,时间长了,上课百分之九十的时间老师都是在看着你讲课,你不点头表示明白了她就不往下讲。。毕竟一节课四十分钟,一个老师一节课平均分给每个学生也就不到一分钟,所以自私点说,就是要给自己争取时间。
课下有问题就问,最好不要问同学,尤其是以为脑子很聪明所以数学学的好的同学,这种人千万别问,倒不是说人家不愿意给你讲,而是现在毕竟是应试 教育 ,那些聪明的同学上课不一定听讲有多认真,有些人做题就是根据自己的思路走,那些解题方法可能适合于他们并不适合你,所以问题一定找老师,老师会给你一套最适合应试的解题方法。
高中数学数列方法和技巧相关 文章 :
1. 高中数学的100个学习方法与高中数学48条秒杀的公式
2. 高中数学学习方法和技巧是什么
3. 高中数学学习的方法技巧
4. 高中数学数列通项公式的求法
5. 高中数学六种解题技巧与五种数学答题思路
6. 高二数学学习方法和技巧大全
7. 高中数学50个解题小技巧
8. 高中数学学习方法及策略
9. 高中数学学习方法总结
数列求和S的方法
这是归纳法来证明数列 由已知公式an=Sn-Sn-1可以推导出{an}这个数列的an 但是这里n必须大于1,也就是从n=2开始 所以就要单独讨论n=1的情况
已知Sn=2n^2-30n,当n=1时,S1=a1=2*1-30=-28
若n>=2时,an=Sn-Sn-1=2n^2-30n-2(n-1)^2+30(n-1)=4n-32
对于上面解得的an,n=1时a1=4-32=-28 与之前计算结果相同,所以an=4n-32对于任意n都适用
综上所述 an=4n-32
数列求和
数列求和问题 公式编辑器粘贴不上啊
数列求和的常用方法
1. 公式法
(1) 直接应用等差、等比数列的求和公式;
(2) 掌握一些常见的数列的前n项和: , 1+3+5+……+=
, 等.
2.分组求和法: 把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
3.倒序相加法:如果一个数列 ,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n项和即可用倒序相加发,如.等差数列的前n项和就是此法推导的。
4.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.
5.裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。常见的拆项公式有: , , , ,
,等.
高考题型归纳:
题型1.公式法求和
直接利用公式求和是数列求和的最基本的方法.常用的数列求和公式有:
等差数列求和公式:
等比数列求和公式:
例1. 已知 ,求 的前n项和.
分析:本题可先求出x,而所求和的形式满足等比数列,所以可以直接用等比数列前n项和公式求解.
解析:由
由等比数列求和公式得 = = =1-
例2. 求 .
解:原式 .
由等差数列求和公式,得原式 .
题型2.分组求和
例3. 求数列 , 的前 项和 .
分析:此数列的通项公式是 ,而数列 是一个等差数列,数列 是一个等比数列,故采用分组求和法求解.
解: .
题型3.倒序相加法求和
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个 .与二项式系数相关联的求和也常用这种方法.
例4. 求数列{n}的前n项和.
解 记Sn=1+2+…+(n-1)+n, 将上式倒写得: Sn=n+(n-1)+…+2+1
把两式相加,由于等式右边对应的项和均为n+1, ∴2 Sn=n(n+1), 即Sn= n(n+1).
例5.求证:
分析:根据性质 ,可用倒序相加来解决这个问题.
证明: 设 ………………………….. ①
把①式右边倒转过来得
(反序)
又由 可得
…………..…….. ②
①+②得 (反序相加)
∴
点评:此类型关键是抓住数列中与首末两端等距离的两项之和相等这一特点来进行倒序相加的。
例6. 求 的和.
分析:由于数列的第 项与倒数第 项的和为常数1,故采用倒序相加法求和.
解:设
则 .
两式相加,得 .
题型4.错位相减法求和
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an? bn}的前n项和,其中{ an }、{ bn }分别是等差数列和等比数列. 错位相减法的步骤是:①在等式两边同时乘以等比数列 的公比;②将两个等式相减;③利用等比数列的前n项和公式求和.
例7. 求和S =
解 由原式乘以公比 得:
Sn= 原式与上式相减,由于错位后对应项的分母相同,可以合并,
∴Sn- Sn= + 即 Sn=3
例8.求数列a,2a2,3a3,4a4,…,nan, …(a为常数)的前n项和。
分析:本题符合错位相减法求解,即数列的每一项由两部分构成,一部分成等差,另一部分成等比。
解析:若a=0, 则Sn=0
若a=1,
则Sn=1+2+3+…+n=
若a≠0且a≠1
则Sn=a+2a2+3a3+4a4+…+ nan
∴aSn= a2+2 a3+3 a4+…+nan+1
∴(1-a) Sn=a+ a2+ a3+…+an- nan+1
=
∴Sn=
当a=0时,此式也成立。
∴Sn=
点评:数列 是由数列 与 对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行讨论,最后再综合成两种情况。而且对于应用等比数列求和时,一定要先注意公比的取值。
题型5.裂项相消法求和
这是分解与组合思想在数列求和中的具体应用。 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项).
例9. 求和:S =
解:S =
例10. 求数列 , , ,…, ,…的前n项和S.
解:∵ = )
Sn= =
=
例11. 已知 ,
求 的和.
解: ,
例12.求数列 的前n项和.
解:设 (裂项) 结果=
如何求该数列的通项公式(关于n的函数)
错位相减求和:
形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。
例如,求和Sn=x+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)
当x=1时,Sn=1+3+5+…+(2n-1)=n^2;
当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);
∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;
两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-2)]-(2n-1)*x^n;
化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2
Sn= 1/2+1/4+1/8+....+1/2^n
两边同时乘以1/2
1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些)
两式相减
1/2Sn=1/2-1/2^(n+1)
Sn=1-1/2^n
裂项求和
裂项求和与倒序相加、错位相减、分组求和等方法一样,是解决一些特殊数列的求和问题的常用方法.这些独具特点的方法,就单个而言,确实精巧,
例子:
求和:1/2+1/6+1/12+1/20
=1/(1*2)+1/(2*3)+1/(3*4)1/(4*5)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)
=1-1/5=4/5
分组求和
就是当CN=AN+BN是,AN为等差数列,BN为等比数列。求CN的前N项和TN
TN为 AN的前N项和SN加上BN的前N项和QN。SN和QN都用公式求。TN就很好解了。
倒序相加求和
其实简单的例子就是推等差数列前N项和的例子了。
SN=A1+A2+……AN
SN=AN+A(N-1)+……A1
2SN=N(AN+A1)
SN=N(AN+A1)/2
其实除了掌握这些基本方法。现在高考中考的最多的还是从递推公式推通向公式,然后求其他一系列的问题。
你要分清递推公式 和通向公式的区别。然后从递推公式 推出通项公式的方法,一般是累加,累乘。
现在题目不在于做多,要有效率。最历年的高考题,各市模拟顺带做做。做完一题,要总结方法。
不过,真正高考中,数列做压轴题的话,一般是保证全省就几个人做对就行了。所以要学会放弃。
是否可以解决您的问题?
数列知识是高考中的重要考察内容,而数列的通项公式又是数列的核心内容之一,它如同函数中的解析式一样,有了解析式便可研究起性质等;而有了数列的通项公式便可求出任一项以及前N项和等.因此,求数列的通项公式往往是解题的突破口,关键点.故将求数列通项公式的方法做一总结,希望能对广大考生的复习有所帮助.下面就谈谈求数列通项公式的几种方法:
1、类型1
解法:把原递推公式转化为?,利用累加法(逐差相加法)求解。
例:已知数列?满足?,?,求?。
解:由条件知:?
分别令?,代入上式得?个等式累加之,即?
所以?,?,?
2、类型2
解法:把原递推公式转化为?,利用累乘法(逐商相乘法)求解。
例:已知数列?满足?,?,求?。
解:由条件知?,分别令?,代入上式得?个等式累乘之,即
又?,?
例:已知?,,求?。
解:?
。3、类型3(其中p,q均为常数,?)。
解法(待定系数法):把原递推公式转化为:?,其中?,再利用换元法转化为等比数列求解。
例:已知数列?中,?,?,求?.
解:设递推公式?可以转化为?即?.故递推公式为?,令?,则?,且?.所以?是以?为首项,2为公比的等比数列,则?,所以?.
变式:递推式:?。解法:只需构造数列?,消去?带来的差异.
4、类型4(其中p,q均为常数,?)。 (或?,其中p,q,? r均为常数)?。
解法:一般地,要先在原递推公式两边同除以?,得:?引入辅助数列?(其中?),得:?再待定系数法解决。
例:已知数列?中,?,?,求?。
解:在?两边乘以?得:?
令?,则?,解之得:?所以?
5、类型5?递推公式为?(其中p,q均为常数)。
解法一(待定系数法):先把原递推公式转化为?其中s,t满足?
例:已知数列?中,?,?,?,求?。
解:由?可转化为?
即或?
这里不妨选用?(当然也可选用?,大家可以试一试),则?是以首项为?,公比为?的等比数列,所以?,应用类型1的方法,分别令?,代入上式得?个等式累加之,即?又?,所以?。
6、类型6?
解法:这种类型一般是等式两边取倒数后换元转化为?。
例:已知数列{an}满足:?,求数列{an}的通项公式。
解:取倒数:是等差数列,