您现在的位置是: 首页 > 教育改革 教育改革
2013高考数列汇编_2013高考题数学
tamoadmin 2024-06-03 人已围观
简介1.2013湖南高考数学2.高考数列大题求解3.数列解题方法技巧总结转自中国教育网:6月7日下午17时05分,山东数学考试结束,考生陆续走出考场。据悉,今年数学总体难度不高,同学普遍感觉比平时考的简单,尤其是后面的大题。不过,今年考题顺序有变,不像一二诊时是三角函数为第一道大题。今年第一道大题是数列,且没有第二问,很简单。2013湖南高考数学高考数学数列解题技巧:基本概念掌握、判定数列类型、善用通
1.2013湖南高考数学
2.高考数列大题求解
3.数列解题方法技巧总结
转自中国教育网:6月7日下午17时05分,山东数学考试结束,考生陆续走出考场。据悉,今年数学总体难度不高,同学普遍感觉比平时考的简单,尤其是后面的大题。不过,今年考题顺序有变,不像一二诊时是三角函数为第一道大题。今年第一道大题是数列,且没有第二问,很简单。
2013湖南高考数学
高考数学数列解题技巧:基本概念掌握、判定数列类型、善用通项公式、善于列方程、巧用数列性质。
1、基本概念掌握:需要准确掌握数列的基本概念,如等差数列、等比数列、通项公式、公差、首项、末项等,这是解题的基础。
2、判定数列类型:在数列问题中,有时需要对数列类型进行鉴定,如等差、等比或等差等比混合数列等,而不同类型的数列在求解时具有不同的方法和技巧。
3、善用通项公式:通项公式是解数列问题中最为关键的公式之一,可以轻松求出任意项的值,因此需要熟练掌握各个类型的数列通项公式。
4、善于列方程:对于一些较复杂的数列问题,可以通过列方程来解决,可以将问题转换为一些简单的方程求解,这是数列解题的一种重要思维方法。
5、巧用数列性质:数列问题中有些性质和规律可以帮助我们解决问题,如等差数列的前n项和公式、等比数列的前n项和公式、等比数列的中项公式等,在实践中要灵活掌握这些性质和规律,熟练运用到解题过程中。
高考数学数列概念
高考数学数列是高考数学中的一个重点考点。数列是指将一系列的数按照一定的规律排列成一个序列的数学概念。
数列可以用通项公式表示,通项公式指的是一个数列中任意一项与其下标之间的关系式,使用通项公式可以求解数列中任意位置的数值,或者利用求和公式求出数列的前n项和。数列分为等差数列、等比数列、等差等比数列等类型。
在高考数学中,数列经常涉及到以下的问题:已知一个数列的前几项或某个特定的数值,求这个数列的通项公式;已知数列的通项公式和某一项的值,求解数列中任意一项的值;已知一个数列的前n项和,求出这个数列的通项公式等等。在解决这些问题的过程中,需要灵活运用各种公式和解题技巧,掌握数列的基本性质和规律,从而顺利应对数列这一考点。
数列是高考数学的重要部分,需要掌握数列的常见性质和公式,加强数列的理论学习和解题能力,以应对高考数学的挑战。
高考数列大题求解
n=4代入Sn=(-1)^n*an-1/(2^n)
得s4=a4-1/16,
即a4+S3=a4-1/16
∴S3=-1/16,
n=3代入Sn=(-1)^n*an-1/(2^n)
得s3=-a3-1/8,
a3=-1/8-S3
=-1/8-(-1/16)
=-1/16.
同理可得?a1=-1/4
n为偶数时,sn-1=-1/(2^n)
n为奇数时,Sn=(-1)^n*an-1/(2^n) ?
得sn-sn-1=an
2an=-an-1+1/(2^n)
得a2=1/4
S1+S2+S3+...+S100=(-1/4+0-1/16+0-...........-1/2^200+0)
=-(1/4+1/16+..........+1/2^200)由首项为1/4,公比为1/4,可得该等比数列前50项的和
=-(1-(1/4)^50)/3=(1/2^100-1)/3.
数列解题方法技巧总结
高中数学合集百度网盘下载
链接:提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
人生需要反思,总结才能远航,回首往夕,收获的是经验和提高。下面就是我整理的数列解题方法技巧总结,一起来看一下吧。
学生们在高中的数学学习过程中如果能够充分掌握高中数学数列试题的解题方法和技巧,这对于在大学期间学习数学会有很大的帮助。在最近几年的数学高考中,数列知识点的考查已经成为高考出题人比较看重的一项考点,甚至有一部分拔高题也都和数列有着直接的关系。可是在高中数学的学习阶段,很多的学生对于高中数学数列试题的解题方法和技巧还非常欠缺,对有一些问题和内容并没有得到充分的理解和吸收,往往在解题过程中,出现这样那样的问题。所以,探索和研究不同类型数列的解题方法和技巧,能够帮助学生更好地学好高中的数学。
高中数学数列试题教学中的解题思路与技巧
1.对数列概念的考查
在高中数列试题中,有一些试题可以直接通过带入已学的通项公式或求和公式,就可以得到答案,面对这一种类型的试题,没有什么技巧而言,我们只需熟练掌握相关的数列公式即可。
例如:在各项都为正数的等比数列{b}中,首项b1=3,b1+b2+b3=21,那么b3+b4+b5等于多少?
解析:(1)本道试题主要是对正项数列的概念以及等比数列的通项公式和求和公式知识点的考查,考查学生对数列基础知识和基本运算的掌握能力。
(2)本试题要求学生要熟练掌握老师在课堂上所教的通项公式和求和公式。
(3)首先让我们来求公比,很明显q不等1,那么我们可以根据我们所学过的等比数列前项和公式,列出关于公比的方程,即3(1-q3)/(1-q)=21。
对于这个方程,我们首先要选择其运算的方式,要求学生平时的练习过程中,要让学生能够熟练地将高次方程转化为低次方程进行运算。
2.对数列性质的考察
有些数列的试题中,经常会变换一些说法来考查学生对数列的基本性质的`理解和掌握能力。
例如:己知等差数列{xn},其中xl+x7=27,求x2+x3+x5+x6等于多少?
解析:我们在课堂上学习过这样的公式:等差数列和等比数列中m+n=p+q,我们可以充分利用这一特性来解此题,即:
xl+x7= x2+x6= x3+x5=27,
因此,x2+x3+x5+x6=(x2+x6)+(x3+x5)=27+27=54
这种类型的数列试题要求教师在课堂教学中,对数列的性质竟详细讲解,仔细推导。使得学生能够真正的理解数列性质的来源。
3.对求通项公式的考察
①利用等差、等比数列的通项公式,求通项公式
②利用关系an={S1,n=1;Sn-Sn-1,n≥2}求通项公式
③利用叠加、叠乘法求通项公式
④利用数学归纳法求通项公式
⑤利用构造法求通项公式.
4.求前n项和的一些方法
在最近几年的数学高考试题中,数列通项公式和数列求和这两个知识点是每年必考的,因此,在高中数学数列的课堂教学中,教师要对数列求和通项公式这方面的知识点进行细致重点的讲解。数列求和的主要解题方法有错位相减法、分组求和法与合并求和法,下面对三种数列求和的解题方法进行详细说明。
(1)错位相减法
错位相减法主要应用于等比数列的求和中,在最近几年的高考试题当中,以此方法来求解数列求和的试题经常会有所体现。这一类型的试题解题方法主要是运用于诸如{等差数列·等比数列}数列前n项和的求和中。
例如:已知{xn}是等差数列,其前n项和是Sn,{yn}是等比数列,且x1=y1=2, x4+y4=27, S4-y4=10,求(1)求数列{xn}与{yn}的通项公式;(2)Tn= xny1+xn-1y2+…+x1yn,n∈N*证明Tn+12=-2xn+10yn,n∈N*
解析:(1)xn=3n-1,yn=2n;
(2)Tn= 2xn+22xn-1+23xn-2+…+2nx1,
2Tn= 22xn+23xn-1+…+2nx2+2n+1x1
计算得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+1=12(1-2n+1)/(1-2+2n+2-6n+2)=10×2n-6n-10
-2an+10bn-12=-2(3n-1)+10×2n-12=10×2n-6n-10
所以,Tn+12=-2xn+10yn,n∈N*
错位相减法主要应用于形如an=bncn,即等差数列·等比数列,这样的数列求和试题运算中,解此类题的技巧是:首先分别列出等差数列和等比数列的前n的和,即Sn,然后再分别将Sn的两侧同时乘以等比数列的公比q,得出qSn;最后错一位,再将两边的式子进行相减就可以了。
(2)分组法求和
在高中数列的试题当中,往往会遇到一部分没有规律的数列试题,它们初看上去既不属于等差数列也不属于等比数列,但是如果将此类型的数列进行拆分,就可以得到我们所了解的等差数列和等比数列,遇到此类型的数列试题,我们就可以通过分组法求和的方法进行解题,首先将数列进行拆分,通过得到的等差数列和等比数列进行运算,最后将其结合在一起得出试题的答案。
(3)合并法求和
在高考数列的试题中,往往会遇到一些非常特殊的题型,它们初看上去没有规律可循,但是通过合并和拆分,就可以找出它们的特殊性质。这就要求我们教师平时要锻炼学生对数列的合并能力,通过合并找出规律,最终成功地解决这类特殊数列的求和问题。
结束语
数列知识是各种数学知识的连接点,在数学考试中,往往是基于数列知识为基础,对学生的综合数学知识进行考查。在高中数列学习过程中,首先要做好数列基本概念和基本性质的掌握,否则任何解题技巧都无济于事。